when the distance from the point ( 0 , − 1 ) (0,-1) ( 0 , − 1 ) is d ( x , y ) d_{(x,y)} d ( x , y ) ,
problem is,
d ( x , y ) = ( x − 0 ) 2 + ( y − ( − 1 ) ) 2 d ( x , y ) = x 2 + ( y + 1 ) 2 m a x i m i z e d ( x , y ) = x 2 + ( y + 1 ) 2 s u b j e c t t o , x 2 + 16 y 2 = 16 d_{(x,y)}=(x-0)^2+(y-(-1))^2\\
d_{(x,y)}=x^2+(y+1)^2\\
maximize\quad d_{(x,y)}=x^2+(y+1)^2\\
\quad subject\ to,\\
\quad\quad x^2+16y^2=16\\ d ( x , y ) = ( x − 0 ) 2 + ( y − ( − 1 ) ) 2 d ( x , y ) = x 2 + ( y + 1 ) 2 ma x imi ze d ( x , y ) = x 2 + ( y + 1 ) 2 s u bj ec t t o , x 2 + 16 y 2 = 16
Here objective function is d ( x , y ) = x 2 + ( y + 1 ) 2 d_{(x,y)} =x^2+(y+1)^2 d ( x , y ) = x 2 + ( y + 1 ) 2
and constraint is C ( x , y ) = x 2 + 16 y 2 − 16 = 0 C_{(x,y)}=x^2+16y^2-16=0 C ( x , y ) = x 2 + 16 y 2 − 16 = 0
so at the maximum point,
∇ d ( x , y ) = λ ∗ ∇ C ( x , y ) λ i s t h e l a g r a n g e m u l t i p l i e r \nabla d_{(x,y)}=\lambda*\nabla C_{(x,y)}\\\quad \lambda\ is\ the\ lagrange\ multiplier ∇ d ( x , y ) = λ ∗ ∇ C ( x , y ) λ i s t h e l a g r an g e m u lt i pl i er
∇ d ( x , y ) = [ 2 x 2 ( y + 1 ) ] \nabla d_{(x,y)}=\begin{bmatrix}2x \\2(y+1) \end{bmatrix}\\ ∇ d ( x , y ) = [ 2 x 2 ( y + 1 ) ]
∇ C ( x , y ) = [ 2 x 32 y ] \nabla C_{(x,y)}=\begin{bmatrix}2x \\32y\end{bmatrix}\\ ∇ C ( x , y ) = [ 2 x 32 y ]
[ 2 x 2 ( y + 1 ) ] = λ [ 2 x 32 y ] \begin{bmatrix}2x \\2(y+1) \end{bmatrix}=\lambda\begin{bmatrix}2x \\32y\end{bmatrix}\\ [ 2 x 2 ( y + 1 ) ] = λ [ 2 x 32 y ]
2 x = λ ∗ 2 x λ = 1 t h e n , 2 ( y + 1 ) = 1 ∗ 32 y y = 1 15 2x=\lambda*2x\\
\lambda=1\\
then,\\
2(y+1)=1*32y\\
y=\frac{1}{15}\\ 2 x = λ ∗ 2 x λ = 1 t h e n , 2 ( y + 1 ) = 1 ∗ 32 y y = 15 1
u s i n g C ( x , y ) , x 2 + 16 ∗ ( 1 15 ) 2 − 16 = 0 x = ± 16 15 14 using\ C_{(x,y)},\\
x^2+16*(\frac{1}{15})^2-16=0\\
x=\pm\frac{16}{15}\sqrt{14}\\ u s in g C ( x , y ) , x 2 + 16 ∗ ( 15 1 ) 2 − 16 = 0 x = ± 15 16 14
Therefore furthest points are,
( 16 15 14 , 1 15 ) a n d ( − 16 15 14 , 1 15 ) \blue{\bold{(\frac{16}{15}\sqrt{14},\frac{1}{15}) }}\ and\ \blue{ \bold{ (-\frac{16}{15}\sqrt{14},\frac{1}{15})}}\\ ( 15 16 14 , 15 1 ) an d ( − 15 16 14 , 15 1 )
d m a x = ( 16 15 14 ) 2 + ( 1 15 + 1 ) 2 = 256 45 d_{max}=(\frac{16}{15}\sqrt{14})^2+(\frac{1}{15}+1)^2=\frac{256}{45} d ma x = ( 15 16 14 ) 2 + ( 15 1 + 1 ) 2 = 45 256
Comments