when the distance from the point "(0,-1)" is "d_{(x,y)}" ,
problem is,
"d_{(x,y)}=(x-0)^2+(y-(-1))^2\\\\\nd_{(x,y)}=x^2+(y+1)^2\\\\\nmaximize\\quad d_{(x,y)}=x^2+(y+1)^2\\\\\n\\quad subject\\ to,\\\\\n\\quad\\quad x^2+16y^2=16\\\\"
Here objective function is "d_{(x,y)} =x^2+(y+1)^2"
and constraint is "C_{(x,y)}=x^2+16y^2-16=0"
so at the maximum point,
"\\nabla d_{(x,y)}=\\lambda*\\nabla C_{(x,y)}\\\\\\quad \\lambda\\ is\\ the\\ lagrange\\ multiplier"
"\\nabla d_{(x,y)}=\\begin{bmatrix}2x \\\\2(y+1) \\end{bmatrix}\\\\"
"\\nabla C_{(x,y)}=\\begin{bmatrix}2x \\\\32y\\end{bmatrix}\\\\"
"\\begin{bmatrix}2x \\\\2(y+1) \\end{bmatrix}=\\lambda\\begin{bmatrix}2x \\\\32y\\end{bmatrix}\\\\"
"2x=\\lambda*2x\\\\\n\\lambda=1\\\\\nthen,\\\\\n 2(y+1)=1*32y\\\\\ny=\\frac{1}{15}\\\\"
"using\\ C_{(x,y)},\\\\\nx^2+16*(\\frac{1}{15})^2-16=0\\\\\nx=\\pm\\frac{16}{15}\\sqrt{14}\\\\"
Therefore furthest points are,
"d_{max}=(\\frac{16}{15}\\sqrt{14})^2+(\\frac{1}{15}+1)^2=\\frac{256}{45}"
Comments
Leave a comment