g(x)=1x+x,g(x)=\frac {1}{\sqrt{x+\sqrt{x}}},g(x)=x+x1, g:R+→R+g:R^+\to R^+g:R+→R+
Let f(x)=xf(x)=\sqrt{x}f(x)=x
h(x)=x2+xh(x)=\sqrt{x^2+x}h(x)=x2+x
k(x)=1xk(x)=\frac 1 xk(x)=x1
We find:
h(f(x))=x+xh(f(x))=\sqrt{x+\sqrt{x}}h(f(x))=x+x
Again:
k(h(f(x)))=1x+xk(h(f(x)))=\frac{1}{\sqrt{x+\sqrt{x}}}k(h(f(x)))=x+x1
So we concluded that
g(x)=k(h(f(x))),g(x)=k(h(f(x))),g(x)=k(h(f(x))), where f(x)=x;h(x)=x2+x;k(x)=1xf(x)=\sqrt{x};h(x)=\sqrt{x^2+x};k(x)=\frac 1 xf(x)=x;h(x)=x2+x;k(x)=x1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment