Answer to Question #108040 in Calculus for khushi

Question #108040
Find
dz/dt
for z = x^2 y + 4y^2 where x = cost and y = sin t using the chain rule
1
Expert's answer
2020-04-06T16:37:57-0400

Given that z=x2y+4y2z=x^2y+4y^2 and x=cost , y=sintx=cost \ , \ y=sint .



dzdt=d(x2y+4y2)dt\therefore \frac{dz}{dt}=\frac{d(x^2y+4y^2)}{dt}

    dzdt=d(x2y)dt+d(4y2)dt\implies \frac{dz}{dt}=\frac{d(x^2y)}{dt} +\frac{d(4y^2)}{dt}     dzdt=x2dydt+ydx2dt+4dy2dt\implies \ \frac{dz}{dt}=x^2\frac{dy}{dt}+y\frac{dx^2}{dt}+4\frac{dy^2}{dt}


Now ,using chain rule we get


dzdt=x2dydt+ydx2dx×dxdt+4dy2dy×dydt\frac{dz}{dt}=x^2\frac{dy}{dt}+y\frac{dx^2}{dx} ×\frac{dx}{dt}+4\frac{dy^2}{dy}×\frac{dy}{dt}


Since,

x=cost     dxdt=sintx=cost \ \implies \frac{dx}{dt}=-sintand y=sint      dydt=costand \ y=sint \ \implies \ \frac{dy}{dt}=cost dzdt=x2cost2xysint+8ycost.\therefore \ \frac{dz}{dt}=x^2cost-2xysint+8ycost.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment