∫ (x)= ∫ (sinxy) dx+ ∫ (cotxy) dx
∫sin(xy)dx+∫cot(xy)dx=1/y∫sin(xy)d(xy)+1/y∫cot(xy)d(xy)=−cos(xy)/y+ln(sin(xy))/y+C=(ln(sin(xy))−cos(xy))/y+C\int sin(xy)dx+\int cot(xy)dx=1/y\int sin(xy)d(xy)+1/y\int cot(xy)d(xy)=\\-cos(xy)/y+ln(sin(xy))/y+C=(ln(sin(xy))-cos(xy))/y+C∫sin(xy)dx+∫cot(xy)dx=1/y∫sin(xy)d(xy)+1/y∫cot(xy)d(xy)=−cos(xy)/y+ln(sin(xy))/y+C=(ln(sin(xy))−cos(xy))/y+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments