ANSWER: 32π⋅sin125
EXPLANATION.
Replace the Cartesian coordinate s with spherical. We denote
D={ (x,y,z): x2+y2+ z2≤25} , Δ={(ρ,θ,φ):0 ≤ ρ≤5,0≤φ≤π,0≤θ≤2π} .
∭Dcos(x2+y2+ z2)23 dxdydz=∭Δ (ρ 2sinφ)cosρ3dρ dφdθ= =∫0π∫02π∫05(ρ 2sinφ)cosρ3dρdθdφ= =2π (∫0πsinφdφ)⋅(∫05(ρ 2cosρ3 ) dρ )= =2π(−cosπ+cos0)⋅ 31(sin125−sin0)=32π⋅sin125
Note ∫sinφdφ=−cosφ+C,∫(ρ 2cosρ3 ) dρ=31∫cosρ3dρ3 =31sinρ3+C
Comments