ANSWER: "\\frac { 2\\pi }{ 3 } \\cdot \\sin { 125\\quad }"
EXPLANATION.
Replace the Cartesian coordinate s with spherical. We denote
"D=\\left\\{ \\ \\left( x,y,z \\right) :\\ ^{ }{ x }^{ 2 }{ +y }^{ 2 }+\\ { z }^{ 2 }\\le 25 \\right\\}" , "\\Delta =\\left\\{ (\\rho ,\\theta ,\\varphi ):0\\ \\le \\ \\rho \\le 5,0\\le \\varphi \\le \\pi ,0\\le \\theta \\le 2\\pi \\right\\}" .
"\\iiint _{ D }^{ }{ \\cos { { \\left( { x }^{ 2 }{ +y }^{ 2 }+\\ { z }^{ 2 } \\right) }^{ \\frac { 3 }{ 2 } \\ }{ dxdydz }^{ } } }""=\\iiint _{ \\Delta \\ }^{ }{ { (\\rho \\ }^{ 2 }\\sin { \\varphi } )\\cos { { \\rho }^{ 3 } } d\\rho \\ d\\varphi d\\theta }=" "=\\int _{ 0 }^{ \\pi }{ \\int _{ 0 }^{ 2\\pi }{ \\int _{ 0 }^{ 5 }{ { (\\rho \\ }^{ 2 }\\sin { \\varphi } )\\cos { { \\rho }^{ 3 } } d\\rho d\\theta } d\\varphi } } =" "=2\\pi \\ \\left( \\int _{ 0 }^{ \\pi }{ \\sin { \\varphi } d\\varphi } \\right) \\cdot \\left( \\int _{ 0 }^{ 5 }{ { (\\rho \\ }^{ 2 }\\cos { { \\rho }^{ 3 } } \\ )\\ d\\rho \\ } \\right) =" "=2\\pi (-\\cos { \\pi + } \\cos { 0) } \\cdot \\ \\frac { 1 }{ 3 } \\left( \\sin { 125- } \\sin { 0 } \\right) =\\frac { 2\\pi }{ 3 } \\cdot \\sin { 125\\quad }"
Note "\\int { \\sin { \\varphi } d\\varphi =-\\cos { \\varphi } +C,\\quad } \\int { { (\\rho \\ }^{ 2 }\\cos { { \\rho }^{ 3 } } \\ )\\ d\\rho } =\\frac { 1 }{ 3 } \\int { \\cos { { \\rho }^{ 3 } } d{ \\rho }^{ 3 }\\ =\\frac { 1 }{ 3 } \\sin { { \\rho }^{ 3 }+C } } \\quad \\\\ \\\\ \\\\ \\quad"
Comments
Leave a comment