(a)"\\frac{dy}{dx}=y'"
(i)
"y=\\ln[\\cos^{-1}((R+2)x)]\\\\\ny'=\\frac{1}{\\cos^{-1}((R+2)x)}\\cdot(-1)\\cos^{-2}((R+2)x)\\cdot\\\\\n\\cdot(-\\sin((R+2)x))\\cdot(R+2)=\\\\\n=\\tan((R+2)x)\\cdot (R+2)\\\\\n\\frac{dy}{dx}=\\tan((R+2)x)\\cdot (R+2)"
(ii)
"x^3-2y^2=\\tan(x^2y^3)\\\\\n3x^2-2\\cdot2y\\cdot y'=\\frac{1}{\\cos^2(x^2y^3)}\\cdot(2xy^3+x^2\\cdot3y^2\\cdot y')\\\\\n3x^2-4y\\cdot y'=\\frac{1}{\\cos^2(x^2y^3)}\\cdot(2xy^3+3x^2y^2\\cdot y')\\\\\n(3x^2-4y\\cdot y')\\cos^2(x^2y^3)=2xy^3+3x^2y^2\\cdot y'\\\\\ny'=\\frac{2xy^3-3x^2\\cdot\\cos^2(x^2y^3)}{-4y\\cos^{2}(x^2y^3)-3x^2y^2}\\\\\n\\frac{dy}{dx}=\\frac{2xy^3-3x^2\\cdot\\cos^2(x^2y^3)}{-4y\\cos^{2}(x^2y^3)-3x^2y^2}"
(iii)
"y=(1+x^2)^{\\sqrt{x}}\\\\\n\\ln y=\\ln((1+x^2)^{\\sqrt{x}})\\\\\n\\ln y=\\sqrt{x}\\ln(1+x^2)\\\\\n\\frac{1}{y}\\cdot y'=\\frac{1}{2\\sqrt{x}}ln(1+x^2)+\\sqrt{x}\\cdot\\frac{1}{1+x^2}\\cdot 2x\\\\\n y'=(\\frac{1}{2\\sqrt{x}}ln(1+x^2)+\\sqrt{x}\\cdot\\frac{2x}{1+x^2})(1+x^2)^{\\sqrt{x}}\\\\\n\\frac{dy}{dx}=(\\frac{1}{2\\sqrt{x}}ln(1+x^2)+\\sqrt{x}\\cdot\\frac{2x}{1+x^2})(1+x^2)^{\\sqrt{x}}"
(b)
"f(x)=x^5+4x+8\\\\\nf'(x)=5x^4+4\\\\\nx^5+4x+8=3\\\\\nx^5+4x+5=0\\\\\nx=-1\\\\\n(-1)^5+4(-1)+5=-1-4+5=0\\\\\n(f^{-1})'(3)=\\frac{1}{f'(-1)}\\\\\nf'(-1)=5\\cdot(-1)^4+4=5+4=9\\\\\n(f^{-1})'(3)=\\frac{1}{9}"
(c)
"g(x)=(1-x)(1-2x)...(1-nx)\\\\\ng'(x)=-(1-2x)(1-3x)...(1-nx)+\\\\\n+(-2)(1-x)(1-3x)...(1-nx)+\\\\\n+...+(-n)(1-x)(1-2x)...(1-(n-1)x)\\\\\ng'(0)=-1+(-2)+...+(-n)=\\\\\n=-(1+2+...+n)=-\\frac{1+n}{2}\\cdot n=-\\frac{n^2+n}{2}"
Comments
Leave a comment