(a)dxdy=y′
(i)
y=ln[cos−1((R+2)x)]y′=cos−1((R+2)x)1⋅(−1)cos−2((R+2)x)⋅⋅(−sin((R+2)x))⋅(R+2)==tan((R+2)x)⋅(R+2)dxdy=tan((R+2)x)⋅(R+2)
(ii)
x3−2y2=tan(x2y3)3x2−2⋅2y⋅y′=cos2(x2y3)1⋅(2xy3+x2⋅3y2⋅y′)3x2−4y⋅y′=cos2(x2y3)1⋅(2xy3+3x2y2⋅y′)(3x2−4y⋅y′)cos2(x2y3)=2xy3+3x2y2⋅y′y′=−4ycos2(x2y3)−3x2y22xy3−3x2⋅cos2(x2y3)dxdy=−4ycos2(x2y3)−3x2y22xy3−3x2⋅cos2(x2y3)
(iii)
y=(1+x2)xlny=ln((1+x2)x)lny=xln(1+x2)y1⋅y′=2x1ln(1+x2)+x⋅1+x21⋅2xy′=(2x1ln(1+x2)+x⋅1+x22x)(1+x2)xdxdy=(2x1ln(1+x2)+x⋅1+x22x)(1+x2)x
(b)
f(x)=x5+4x+8f′(x)=5x4+4x5+4x+8=3x5+4x+5=0x=−1(−1)5+4(−1)+5=−1−4+5=0(f−1)′(3)=f′(−1)1f′(−1)=5⋅(−1)4+4=5+4=9(f−1)′(3)=91
(c)
g(x)=(1−x)(1−2x)...(1−nx)g′(x)=−(1−2x)(1−3x)...(1−nx)++(−2)(1−x)(1−3x)...(1−nx)++...+(−n)(1−x)(1−2x)...(1−(n−1)x)g′(0)=−1+(−2)+...+(−n)==−(1+2+...+n)=−21+n⋅n=−2n2+n
Comments