Question #108255
[img]https://upload.cc/i1/2020/04/06/jDxf0z.jpg[/img]



the question is in the photo
1
Expert's answer
2020-04-12T14:47:04-0400

(a)dydx=y\frac{dy}{dx}=y'

(i)

y=ln[cos1((R+2)x)]y=1cos1((R+2)x)(1)cos2((R+2)x)(sin((R+2)x))(R+2)==tan((R+2)x)(R+2)dydx=tan((R+2)x)(R+2)y=\ln[\cos^{-1}((R+2)x)]\\ y'=\frac{1}{\cos^{-1}((R+2)x)}\cdot(-1)\cos^{-2}((R+2)x)\cdot\\ \cdot(-\sin((R+2)x))\cdot(R+2)=\\ =\tan((R+2)x)\cdot (R+2)\\ \frac{dy}{dx}=\tan((R+2)x)\cdot (R+2)


(ii)

x32y2=tan(x2y3)3x222yy=1cos2(x2y3)(2xy3+x23y2y)3x24yy=1cos2(x2y3)(2xy3+3x2y2y)(3x24yy)cos2(x2y3)=2xy3+3x2y2yy=2xy33x2cos2(x2y3)4ycos2(x2y3)3x2y2dydx=2xy33x2cos2(x2y3)4ycos2(x2y3)3x2y2x^3-2y^2=\tan(x^2y^3)\\ 3x^2-2\cdot2y\cdot y'=\frac{1}{\cos^2(x^2y^3)}\cdot(2xy^3+x^2\cdot3y^2\cdot y')\\ 3x^2-4y\cdot y'=\frac{1}{\cos^2(x^2y^3)}\cdot(2xy^3+3x^2y^2\cdot y')\\ (3x^2-4y\cdot y')\cos^2(x^2y^3)=2xy^3+3x^2y^2\cdot y'\\ y'=\frac{2xy^3-3x^2\cdot\cos^2(x^2y^3)}{-4y\cos^{2}(x^2y^3)-3x^2y^2}\\ \frac{dy}{dx}=\frac{2xy^3-3x^2\cdot\cos^2(x^2y^3)}{-4y\cos^{2}(x^2y^3)-3x^2y^2}


(iii)

y=(1+x2)xlny=ln((1+x2)x)lny=xln(1+x2)1yy=12xln(1+x2)+x11+x22xy=(12xln(1+x2)+x2x1+x2)(1+x2)xdydx=(12xln(1+x2)+x2x1+x2)(1+x2)xy=(1+x^2)^{\sqrt{x}}\\ \ln y=\ln((1+x^2)^{\sqrt{x}})\\ \ln y=\sqrt{x}\ln(1+x^2)\\ \frac{1}{y}\cdot y'=\frac{1}{2\sqrt{x}}ln(1+x^2)+\sqrt{x}\cdot\frac{1}{1+x^2}\cdot 2x\\ y'=(\frac{1}{2\sqrt{x}}ln(1+x^2)+\sqrt{x}\cdot\frac{2x}{1+x^2})(1+x^2)^{\sqrt{x}}\\ \frac{dy}{dx}=(\frac{1}{2\sqrt{x}}ln(1+x^2)+\sqrt{x}\cdot\frac{2x}{1+x^2})(1+x^2)^{\sqrt{x}}


(b)

f(x)=x5+4x+8f(x)=5x4+4x5+4x+8=3x5+4x+5=0x=1(1)5+4(1)+5=14+5=0(f1)(3)=1f(1)f(1)=5(1)4+4=5+4=9(f1)(3)=19f(x)=x^5+4x+8\\ f'(x)=5x^4+4\\ x^5+4x+8=3\\ x^5+4x+5=0\\ x=-1\\ (-1)^5+4(-1)+5=-1-4+5=0\\ (f^{-1})'(3)=\frac{1}{f'(-1)}\\ f'(-1)=5\cdot(-1)^4+4=5+4=9\\ (f^{-1})'(3)=\frac{1}{9}


(c)

g(x)=(1x)(12x)...(1nx)g(x)=(12x)(13x)...(1nx)++(2)(1x)(13x)...(1nx)++...+(n)(1x)(12x)...(1(n1)x)g(0)=1+(2)+...+(n)==(1+2+...+n)=1+n2n=n2+n2g(x)=(1-x)(1-2x)...(1-nx)\\ g'(x)=-(1-2x)(1-3x)...(1-nx)+\\ +(-2)(1-x)(1-3x)...(1-nx)+\\ +...+(-n)(1-x)(1-2x)...(1-(n-1)x)\\ g'(0)=-1+(-2)+...+(-n)=\\ =-(1+2+...+n)=-\frac{1+n}{2}\cdot n=-\frac{n^2+n}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS