"I=\\int \\:tan^3\\left(x\\right)dx"
"=\\int \\:tan^2\\left(x\\right)\\cdot tan(x)\\:dx"
We know "tan^2(x)=sec^2(x)-1" . Substituting this in above integral.
"=\\int \\:\\left(sec^2x-1\\right)tan\\left(x\\right)dx"
"=\\int \\:\\left(\\:tan\\left(x\\right)sec^2\\left(x\\right)-\\:tan\\left(x\\right)\\right)dx"
"=\\int \\:tan\\left(x\\right)sec^2\\left(x\\right)dx-\\int \\:tan\\left(x\\right)dx"
"=I_1-I_2" ......................................................................................................eqn (1)
"I_1=\\int tan(x)sec^2(x)dx"
apply u-substitution
Let "u=tanx"
"\\Rightarrow du=sec^2(x)dx"
"I_1=\\int u du"
"=\\frac{u^2}{2}+C_1" where "C_1" = integral constant
substituting "u = tanx" back
"I_1=\\frac{tan^2(x)}{2}+C"
Also "I_2=\\int tan(x)dx=-ln|cos(x)|+C_2" where "C_2" = integral constant
Substituting value of "I_1" and "I_2" in equation 1
"I=\\frac{tan^2(x)}{2}+ln|cos(x)|+C" where "C=C_1+C_2," another integration constant.
Another method: Using direct reduction formula (if you know or remember, otherwise please use above method).
"\\int \\:tan^n\\left(x\\right)dx=\\frac{tan^{n-1}\\left(x\\right)}{n-1}-\\int \\:tan^{n-2}\\left(x\\right)dx+C" where "n\\ne1"
Putting n =3
I "=\\frac{tan^2\\left(x\\right)}{2}-\\int \\:tan\\left(x\\right)dx"
I "=\\frac{tan^2\\left(x\\right)}{2}-(-ln|cos(x)|)+C"
I "=\\frac{tan^2(x)}{2}+ln|cos(x)|+C"
Comments
Leave a comment