Answer to Question #103231 in Calculus for Patrick Kariuki

Question #103231
Integrate tan³x dx using reduction method
1
Expert's answer
2020-02-20T09:15:21-0500

I=tan3(x)dxI=\int \:tan^3\left(x\right)dx

=tan2(x)tan(x)dx=\int \:tan^2\left(x\right)\cdot tan(x)\:dx

We know tan2(x)=sec2(x)1tan^2(x)=sec^2(x)-1 . Substituting this in above integral.

=(sec2x1)tan(x)dx=\int \:\left(sec^2x-1\right)tan\left(x\right)dx

=(tan(x)sec2(x)tan(x))dx=\int \:\left(\:tan\left(x\right)sec^2\left(x\right)-\:tan\left(x\right)\right)dx

=tan(x)sec2(x)dxtan(x)dx=\int \:tan\left(x\right)sec^2\left(x\right)dx-\int \:tan\left(x\right)dx

=I1I2=I_1-I_2 ......................................................................................................eqn (1)

I1=tan(x)sec2(x)dxI_1=\int tan(x)sec^2(x)dx

apply u-substitution

Let u=tanxu=tanx

du=sec2(x)dx\Rightarrow du=sec^2(x)dx

I1=uduI_1=\int u du

=u22+C1=\frac{u^2}{2}+C_1 where C1C_1 = integral constant

substituting u=tanxu = tanx back

I1=tan2(x)2+CI_1=\frac{tan^2(x)}{2}+C

Also I2=tan(x)dx=lncos(x)+C2I_2=\int tan(x)dx=-ln|cos(x)|+C_2 where C2C_2 = integral constant

Substituting value of I1I_1 and I2I_2 in equation 1

I=tan2(x)2+lncos(x)+CI=\frac{tan^2(x)}{2}+ln|cos(x)|+C where C=C1+C2,C=C_1+C_2, another integration constant.



Another method: Using direct reduction formula (if you know or remember, otherwise please use above method).

tann(x)dx=tann1(x)n1tann2(x)dx+C\int \:tan^n\left(x\right)dx=\frac{tan^{n-1}\left(x\right)}{n-1}-\int \:tan^{n-2}\left(x\right)dx+C where n1n\ne1

Putting n =3

I =tan2(x)2tan(x)dx=\frac{tan^2\left(x\right)}{2}-\int \:tan\left(x\right)dx

I =tan2(x)2(lncos(x))+C=\frac{tan^2\left(x\right)}{2}-(-ln|cos(x)|)+C

I =tan2(x)2+lncos(x)+C=\frac{tan^2(x)}{2}+ln|cos(x)|+C




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment