I=∫tan3(x)dx
=∫tan2(x)⋅tan(x)dx
We know tan2(x)=sec2(x)−1 . Substituting this in above integral.
=∫(sec2x−1)tan(x)dx
=∫(tan(x)sec2(x)−tan(x))dx
=∫tan(x)sec2(x)dx−∫tan(x)dx
=I1−I2 ......................................................................................................eqn (1)
I1=∫tan(x)sec2(x)dx
apply u-substitution
Let u=tanx
⇒du=sec2(x)dx
I1=∫udu
=2u2+C1 where C1 = integral constant
substituting u=tanx back
I1=2tan2(x)+C
Also I2=∫tan(x)dx=−ln∣cos(x)∣+C2 where C2 = integral constant
Substituting value of I1 and I2 in equation 1
I=2tan2(x)+ln∣cos(x)∣+C where C=C1+C2, another integration constant.
Another method: Using direct reduction formula (if you know or remember, otherwise please use above method).
∫tann(x)dx=n−1tann−1(x)−∫tann−2(x)dx+C where n=1
Putting n =3
I =2tan2(x)−∫tan(x)dx
I =2tan2(x)−(−ln∣cos(x)∣)+C
I =2tan2(x)+ln∣cos(x)∣+C
Comments
Leave a comment