Substitution:
"x=\\frac{2}{5}\\sec{\\theta}"
Then "dx=\\frac{2}{5}\\frac{\\sin{\\theta}}{\\cos^2{\\theta}}d\\theta"
"\\int\\frac{dx}{\\sqrt{25x^2-4}}=\\int\\frac{2}{5}\\frac{\\sin{\\theta}}{\\cos^2{\\theta}\\sqrt{4\\sec^2{\\theta}-4}}d\\theta=\\frac{1}{5}\\int\\frac{\\sin{\\theta}}{\\cos^2{\\theta}\\sqrt{\\sec^2{\\theta}-1}}d\\theta="
"=\\frac{1}{5}\\int\\frac{\\sin{\\theta}}{\\cos^2{\\theta}\\tan{\\theta}}d\\theta=\\frac{1}{5}\\int\\frac{d\\theta}{\\cos{\\theta}}=\\frac{1}{5}\\int\\sec{\\theta}d\\theta=\\frac{1}{5}\\ln|\\sec{\\theta}+\\tan{\\theta}|+C.\\\\\nhttp:\/\/www.math.com\/tables\/integrals\/more\/sec.htm"
"\\sec{\\theta}=\\frac{5}{2}x"
"x^2=\\frac{4}{25}\\frac{1}{\\cos^2{\\theta}}\\\\\nx^2-\\frac{4}{25}=\\frac{4}{25}tan^2{\\theta}\\\\\ntan^2{\\theta}=\\frac{25}{4}x^2-1\\\\\ntan{\\theta}=\\sqrt{\\frac{25}{4}x^2-1}"
We have
"\\int\\frac{dx}{\\sqrt{25x^2-4}}=\\frac{1}{5}\\ln|\\frac{5}{2}x+\\sqrt{\\frac{25}{4}x^2-1}|+C."
Comments
Leave a comment