Substitution:
x = 2 5 sec θ x=\frac{2}{5}\sec{\theta} x = 5 2 sec θ
Then d x = 2 5 sin θ cos 2 θ d θ dx=\frac{2}{5}\frac{\sin{\theta}}{\cos^2{\theta}}d\theta d x = 5 2 c o s 2 θ s i n θ d θ
∫ d x 25 x 2 − 4 = ∫ 2 5 sin θ cos 2 θ 4 sec 2 θ − 4 d θ = 1 5 ∫ sin θ cos 2 θ sec 2 θ − 1 d θ = \int\frac{dx}{\sqrt{25x^2-4}}=\int\frac{2}{5}\frac{\sin{\theta}}{\cos^2{\theta}\sqrt{4\sec^2{\theta}-4}}d\theta=\frac{1}{5}\int\frac{\sin{\theta}}{\cos^2{\theta}\sqrt{\sec^2{\theta}-1}}d\theta= ∫ 25 x 2 − 4 d x = ∫ 5 2 c o s 2 θ 4 s e c 2 θ − 4 s i n θ d θ = 5 1 ∫ c o s 2 θ s e c 2 θ − 1 s i n θ d θ =
= 1 5 ∫ sin θ cos 2 θ tan θ d θ = 1 5 ∫ d θ cos θ = 1 5 ∫ sec θ d θ = 1 5 ln ∣ sec θ + tan θ ∣ + C . h t t p : / / w w w . m a t h . c o m / t a b l e s / i n t e g r a l s / m o r e / s e c . h t m =\frac{1}{5}\int\frac{\sin{\theta}}{\cos^2{\theta}\tan{\theta}}d\theta=\frac{1}{5}\int\frac{d\theta}{\cos{\theta}}=\frac{1}{5}\int\sec{\theta}d\theta=\frac{1}{5}\ln|\sec{\theta}+\tan{\theta}|+C.\\
http://www.math.com/tables/integrals/more/sec.htm = 5 1 ∫ c o s 2 θ t a n θ s i n θ d θ = 5 1 ∫ c o s θ d θ = 5 1 ∫ sec θ d θ = 5 1 ln ∣ sec θ + tan θ ∣ + C . h ttp : // www . ma t h . co m / t ab l es / in t e g r a l s / m ore / sec . h t m
sec θ = 5 2 x \sec{\theta}=\frac{5}{2}x sec θ = 2 5 x
x 2 = 4 25 1 cos 2 θ x 2 − 4 25 = 4 25 t a n 2 θ t a n 2 θ = 25 4 x 2 − 1 t a n θ = 25 4 x 2 − 1 x^2=\frac{4}{25}\frac{1}{\cos^2{\theta}}\\
x^2-\frac{4}{25}=\frac{4}{25}tan^2{\theta}\\
tan^2{\theta}=\frac{25}{4}x^2-1\\
tan{\theta}=\sqrt{\frac{25}{4}x^2-1} x 2 = 25 4 c o s 2 θ 1 x 2 − 25 4 = 25 4 t a n 2 θ t a n 2 θ = 4 25 x 2 − 1 t an θ = 4 25 x 2 − 1
We have
∫ d x 25 x 2 − 4 = 1 5 ln ∣ 5 2 x + 25 4 x 2 − 1 ∣ + C . \int\frac{dx}{\sqrt{25x^2-4}}=\frac{1}{5}\ln|\frac{5}{2}x+\sqrt{\frac{25}{4}x^2-1}|+C. ∫ 25 x 2 − 4 d x = 5 1 ln ∣ 2 5 x + 4 25 x 2 − 1 ∣ + C .
Comments