Question #103218
Integrate dx/(25x²-4)½
1
Expert's answer
2020-02-20T09:48:29-0500

The integral is given by:

dx25x24\int \frac{dx}{\sqrt{25x^2 - 4}} \\


Let us assume that:

u=5x2u = \frac{5x}{2} (Equation 1)

du=52dxdx=25du\Rightarrow du = \frac{5}{2} dx \\ \Rightarrow dx = \frac{2}{5} du \\


From the (Equation 1), we can also write:

x=2u5x = \frac{2u}{5}


Now:

Substituting x=2u5x = \frac{2u}{5} into the integration and integrating with respect to dudu , we have:

=25du4u24=25du2u21=15duu21= \frac{2}{5} \int \frac{du}{\sqrt{4u^2 - 4}} \\ = \frac{2}{5} \int \frac{du}{2 \sqrt{u^2 - 1}} \\ = \frac{1}{5} \int \frac{du}{\sqrt{u^2 - 1}} \\


Again:

Let us assume that:

u=sec(θ)du=sec(θ)tan(θ)dθu = \sec (\theta ) \\ \Rightarrow du = \sec (\theta) \tan (\theta) \, d \theta \\


Again:

Substituting u=sec(θ)u = \sec (\theta) into the integration and integrating with respect to dθd \theta , we have:

=15sec(θ)tan(θ)sec2(θ)1dθ= \frac{1}{5} \int \frac{\sec (\theta) \tan (\theta )}{\sqrt{\sec^2 (\theta) - 1}} \, d \theta \\

=15sec(θ)tan(θ)tan(θ)dθ= \frac{1}{5} \int \frac{\sec (\theta) \tan (\theta)}{\tan (\theta)} \, d \theta [ sec2(θ)tan2(θ)=1\because \sec^2 (\theta) - \tan^2 (\theta) = 1 ]

=15sec(θ)dθ=15lnsec(θ)+tan(θ)+C= \frac{1}{5} \int sec (\theta) \, d \theta \\ = \frac{1}{5} \ln \mid \sec (\theta) + \tan (\theta) \mid + C

[ sec(x)dx=lntan(x)+sec(x)+C\because \int \sec (x) \, dx = \ln \mid \tan (x) + \sec (x) \mid + C ( Where C is a constant of integration) ]


Undo substitution sec(θ)=u\sec (\theta ) = u and tan(θ)=u21\tan (\theta) = \sqrt{u^2 -1} into the integration and we have:

=15lnu+u21+C= \frac{1}{5} \ln \mid u + \sqrt{u^2 - 1} \mid + C


Again:

Undo substitution u=5x2u = \frac{5x}{2} into the integration and we have:

=15ln5x2+25x241+C=15ln5x2+25x242+C= \frac{1}{5} \ln \mid \frac{5x}{2} + \sqrt{ \frac{25x^2}{4} - 1 } \mid + C \\ = \frac{1}{5} \ln \mid \frac{5x}{2} + \frac{\sqrt{25x^2 -4}}{2} \mid + C \\

=15ln5x+25x242+C= \frac{1}{5} \ln \mid \frac{5x + \sqrt{25x^2 -4}}{2} \mid + C \\

=15ln5x+25x2415ln2+C= \frac{1}{5} \ln \mid 5x + \sqrt{25x^2 - 4} \mid - \frac{1}{5} \ln \mid 2 \mid + C [lnab=lnalnb]\left[ \because \ln \mid \frac{a}{b} \mid = \ln \mid a \mid - \ln \mid b \mid \right]

=15ln5x+25x24+K= \frac{1}{5} \ln \mid 5x + \sqrt{25x^2 - 4} \mid + K [ K=C15ln2\because K = C - \frac{1}{5} \ln \mid 2 \mid ( Where K is an arbitrary constant) ]




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS