The integral is given by:
"\\int \\frac{dx}{\\sqrt{25x^2 - 4}} \\\\"
Let us assume that:
"u = \\frac{5x}{2}" (Equation 1)
"\\Rightarrow du = \\frac{5}{2} dx \\\\\n\\Rightarrow dx = \\frac{2}{5} du \\\\"
From the (Equation 1), we can also write:
"x = \\frac{2u}{5}"
Now:
Substituting "x = \\frac{2u}{5}" into the integration and integrating with respect to "du" , we have:
"= \\frac{2}{5} \\int \\frac{du}{\\sqrt{4u^2 - 4}} \\\\\n= \\frac{2}{5} \\int \\frac{du}{2 \\sqrt{u^2 - 1}} \\\\\n= \\frac{1}{5} \\int \\frac{du}{\\sqrt{u^2 - 1}} \\\\"
Again:
Let us assume that:
"u = \\sec (\\theta ) \\\\\n\\Rightarrow du = \\sec (\\theta) \\tan (\\theta) \\, d \\theta \\\\"
Again:
Substituting "u = \\sec (\\theta)" into the integration and integrating with respect to "d \\theta" , we have:
"= \\frac{1}{5} \\int \\frac{\\sec (\\theta) \\tan (\\theta )}{\\sqrt{\\sec^2 (\\theta) - 1}} \\, d \\theta \\\\"
"= \\frac{1}{5} \\int \\frac{\\sec (\\theta) \\tan (\\theta)}{\\tan (\\theta)} \\, d \\theta" [ "\\because \\sec^2 (\\theta) - \\tan^2 (\\theta) = 1" ]
"= \\frac{1}{5} \\int sec (\\theta) \\, d \\theta \\\\\n= \\frac{1}{5} \\ln \\mid \\sec (\\theta) + \\tan (\\theta) \\mid + C"
[ "\\because \\int \\sec (x) \\, dx = \\ln \\mid \\tan (x) + \\sec (x) \\mid + C" ( Where C is a constant of integration) ]
Undo substitution "\\sec (\\theta ) = u" and "\\tan (\\theta) = \\sqrt{u^2 -1}" into the integration and we have:
"= \\frac{1}{5} \\ln \\mid u + \\sqrt{u^2 - 1} \\mid + C"
Again:
Undo substitution "u = \\frac{5x}{2}" into the integration and we have:
"= \\frac{1}{5} \\ln \\mid \\frac{5x}{2} + \\sqrt{ \\frac{25x^2}{4} - 1 } \\mid + C \\\\\n= \\frac{1}{5} \\ln \\mid \\frac{5x}{2} + \\frac{\\sqrt{25x^2 -4}}{2} \\mid + C \\\\"
"= \\frac{1}{5} \\ln \\mid \\frac{5x + \\sqrt{25x^2 -4}}{2} \\mid + C \\\\"
"= \\frac{1}{5} \\ln \\mid 5x + \\sqrt{25x^2 - 4} \\mid - \\frac{1}{5} \\ln \\mid 2 \\mid + C" "\\left[ \\because \\ln \\mid \\frac{a}{b} \\mid = \\ln \\mid a \\mid - \\ln \\mid b \\mid \\right]"
"= \\frac{1}{5} \\ln \\mid 5x + \\sqrt{25x^2 - 4} \\mid + K" [ "\\because K = C - \\frac{1}{5} \\ln \\mid 2 \\mid" ( Where K is an arbitrary constant) ]
Comments
Leave a comment