The integral is given by:
∫ d x 25 x 2 − 4 \int \frac{dx}{\sqrt{25x^2 - 4}} \\ ∫ 25 x 2 − 4 d x
Let us assume that:
u = 5 x 2 u = \frac{5x}{2} u = 2 5 x (Equation 1)
⇒ d u = 5 2 d x ⇒ d x = 2 5 d u \Rightarrow du = \frac{5}{2} dx \\
\Rightarrow dx = \frac{2}{5} du \\ ⇒ d u = 2 5 d x ⇒ d x = 5 2 d u
From the (Equation 1), we can also write:
x = 2 u 5 x = \frac{2u}{5} x = 5 2 u
Now:
Substituting x = 2 u 5 x = \frac{2u}{5} x = 5 2 u into the integration and integrating with respect to d u du d u , we have:
= 2 5 ∫ d u 4 u 2 − 4 = 2 5 ∫ d u 2 u 2 − 1 = 1 5 ∫ d u u 2 − 1 = \frac{2}{5} \int \frac{du}{\sqrt{4u^2 - 4}} \\
= \frac{2}{5} \int \frac{du}{2 \sqrt{u^2 - 1}} \\
= \frac{1}{5} \int \frac{du}{\sqrt{u^2 - 1}} \\ = 5 2 ∫ 4 u 2 − 4 d u = 5 2 ∫ 2 u 2 − 1 d u = 5 1 ∫ u 2 − 1 d u
Again:
Let us assume that:
u = sec ( θ ) ⇒ d u = sec ( θ ) tan ( θ ) d θ u = \sec (\theta ) \\
\Rightarrow du = \sec (\theta) \tan (\theta) \, d \theta \\ u = sec ( θ ) ⇒ d u = sec ( θ ) tan ( θ ) d θ
Again:
Substituting u = sec ( θ ) u = \sec (\theta) u = sec ( θ ) into the integration and integrating with respect to d θ d \theta d θ , we have:
= 1 5 ∫ sec ( θ ) tan ( θ ) sec 2 ( θ ) − 1 d θ = \frac{1}{5} \int \frac{\sec (\theta) \tan (\theta )}{\sqrt{\sec^2 (\theta) - 1}} \, d \theta \\ = 5 1 ∫ s e c 2 ( θ ) − 1 s e c ( θ ) t a n ( θ ) d θ
= 1 5 ∫ sec ( θ ) tan ( θ ) tan ( θ ) d θ = \frac{1}{5} \int \frac{\sec (\theta) \tan (\theta)}{\tan (\theta)} \, d \theta = 5 1 ∫ t a n ( θ ) s e c ( θ ) t a n ( θ ) d θ [ ∵ sec 2 ( θ ) − tan 2 ( θ ) = 1 \because \sec^2 (\theta) - \tan^2 (\theta) = 1 ∵ sec 2 ( θ ) − tan 2 ( θ ) = 1 ]
= 1 5 ∫ s e c ( θ ) d θ = 1 5 ln ∣ sec ( θ ) + tan ( θ ) ∣ + C = \frac{1}{5} \int sec (\theta) \, d \theta \\
= \frac{1}{5} \ln \mid \sec (\theta) + \tan (\theta) \mid + C = 5 1 ∫ sec ( θ ) d θ = 5 1 ln ∣ sec ( θ ) + tan ( θ ) ∣ + C
[ ∵ ∫ sec ( x ) d x = ln ∣ tan ( x ) + sec ( x ) ∣ + C \because \int \sec (x) \, dx = \ln \mid \tan (x) + \sec (x) \mid + C ∵ ∫ sec ( x ) d x = ln ∣ tan ( x ) + sec ( x ) ∣ + C ( Where C is a constant of integration) ]
Undo substitution sec ( θ ) = u \sec (\theta ) = u sec ( θ ) = u and tan ( θ ) = u 2 − 1 \tan (\theta) = \sqrt{u^2 -1} tan ( θ ) = u 2 − 1 into the integration and we have:
= 1 5 ln ∣ u + u 2 − 1 ∣ + C = \frac{1}{5} \ln \mid u + \sqrt{u^2 - 1} \mid + C = 5 1 ln ∣ u + u 2 − 1 ∣ + C
Again:
Undo substitution u = 5 x 2 u = \frac{5x}{2} u = 2 5 x into the integration and we have:
= 1 5 ln ∣ 5 x 2 + 25 x 2 4 − 1 ∣ + C = 1 5 ln ∣ 5 x 2 + 25 x 2 − 4 2 ∣ + C = \frac{1}{5} \ln \mid \frac{5x}{2} + \sqrt{ \frac{25x^2}{4} - 1 } \mid + C \\
= \frac{1}{5} \ln \mid \frac{5x}{2} + \frac{\sqrt{25x^2 -4}}{2} \mid + C \\ = 5 1 ln ∣ 2 5 x + 4 25 x 2 − 1 ∣ + C = 5 1 ln ∣ 2 5 x + 2 25 x 2 − 4 ∣ + C
= 1 5 ln ∣ 5 x + 25 x 2 − 4 2 ∣ + C = \frac{1}{5} \ln \mid \frac{5x + \sqrt{25x^2 -4}}{2} \mid + C \\ = 5 1 ln ∣ 2 5 x + 25 x 2 − 4 ∣ + C
= 1 5 ln ∣ 5 x + 25 x 2 − 4 ∣ − 1 5 ln ∣ 2 ∣ + C = \frac{1}{5} \ln \mid 5x + \sqrt{25x^2 - 4} \mid - \frac{1}{5} \ln \mid 2 \mid + C = 5 1 ln ∣ 5 x + 25 x 2 − 4 ∣ − 5 1 ln ∣ 2 ∣ + C [ ∵ ln ∣ a b ∣ = ln ∣ a ∣ − ln ∣ b ∣ ] \left[ \because \ln \mid \frac{a}{b} \mid = \ln \mid a \mid - \ln \mid b \mid \right] [ ∵ ln ∣ b a ∣= ln ∣ a ∣ − ln ∣ b ∣ ]
= 1 5 ln ∣ 5 x + 25 x 2 − 4 ∣ + K = \frac{1}{5} \ln \mid 5x + \sqrt{25x^2 - 4} \mid + K = 5 1 ln ∣ 5 x + 25 x 2 − 4 ∣ + K [ ∵ K = C − 1 5 ln ∣ 2 ∣ \because K = C - \frac{1}{5} \ln \mid 2 \mid ∵ K = C − 5 1 ln ∣ 2 ∣ ( Where K is an arbitrary constant) ]
Comments