"f(x)=x^4-1"
"f(x)=a_0P_0(x)+a_1P_1(x)+a_2P_2(x)+... \\ ,\\qquad x\\in[-1,1]"
Multiplying both sides by "P_m(x)" and integrating over the interval "[-1,1]" , we have:
"a_m=\\frac{1}2{}(2m+1)\\int \\limits _{-1}^{1} f(x)P_m(x)dx"
Then we can use Rodrigues formula for Legendre polynomials :
"a_m=(-1)^m \\frac{2m+1}{2^{m+1}m!} \\int\\limits_{-1}^{1}f(x)\\frac{d^m(1-x^2)^m}{dx^m} dx"
Integrating by parts several times, we have:
"a_m=\\frac{2m+1}{2^{m+1}m!}\\int\\limits_{-1}^{1} \\frac{d^mf(x)}{dx^m}(1-x^2)^mdx"
Now we can calculate coefficients "a_m:"
"a_0=\\frac{1}{2}\\int\\limits_{-1}^{1}(x^4-1)dx=\\frac{1}{2}(\\frac{x^5}{5}-x)|_{-1}^{1}=-\\frac{4}{5}"
"a_1=\\frac{3}{4}\\int\\limits_{-1}^{1}4x^3 (1-x^2)dx= 3\\int\\limits_{-1}^{1}(x^3 -x^5)dx=3(\\frac{x^4}{4}-\\frac{x^6}{6})\\vert_{-1}^{1}=0"
"a_2=\\frac{5}{8\\times 2!}\\int\\limits_{-1}^{1}12x^2(1-x^2)^2dx= \\frac{15}{4}\\int\\limits_{-1}^{1}(x^2 -2x^4+x^6)dx="
"\\frac{15}{4}(\\frac{x^3}{3}-\\frac{2x^5}{5}+\\frac{x^7}{7})|_{-1}^{1}=\\frac{4}{7}"
"a_3=\\frac{7}{16\\times 3!}\\int\\limits_{-1}^{1}24x (1-x^2)^3dx= \\frac{7}{4}\\int\\limits_{-1}^{1}(x-3x^3+3x^5-x^7)dx="
"=\\frac{7}{4}(\\frac{x^2}{2}-3\\frac{x^4}{4}+3\\frac{x^6}{6}-\\frac{x^8}{8})\\vert_{-1}^{1}=0"
"a_4=\\frac{9}{32\\times 4!}\\int\\limits_{-1}^{1}24(1-x^2)^4dx= \\frac{9}{32}\\int\\limits_{-1}^{1}(1-4x^2+6x^4\u20134x^6+x^8)dx="
"=\\frac{9}{32}(x-\\frac{4x^3}{3}+\\frac{6x^5}{5}-\\frac{4x^7}{7}+\\frac{x^9}{9})|_{-1}^{1}=\\frac{8}{35}"
"a_m=\\frac{2m+1}{2^{m+1}m!}\\int\\limits_{-1}^{1}0\\times (1-x^2)^mdx=0, \\;\\; m\\geq5"
"-\\frac{4}{5}P_0(x)+\\frac{4}{7}P_2(x)+\\frac{8}{35}P_4(x)= -\\frac{4}{5}\\times 1 +\\frac{4}{7}\\times \\frac{1}{2}(3x^2-1)+\\frac{8}{35}\\times \\frac{35x^4-30x^2+3}{8}="
"=-\\frac{4}{5}+\\frac{6}{7}x^2-\\frac{2}{7}+x^4-\\frac{6}{7}x^2+\\frac{3}{35}=x^4-1" .
Answer: "f(x)=-\\frac{4}{5}P_0(x)+\\frac{4}{7}P_2(x)+\\frac{8}{35}P_4(x)."
Comments
Leave a comment