The Rodrigues formula for the Hermite Polynomial can be written as
"H_n(x)=(-1)^xe^{x^2}\\frac{d^n}{dx^n}e^{-x^2}"
For "H_2(x)" we obtain
"H_2(x)=(-1)^xe^{x^2}\\frac{d^2}{dx^2}e^{-x^2}=4x^2-2"
For "H_3(x)"
"H_3(x)=(-1)^xe^{x^2}\\frac{d^3}{dx^3}e^{-x^2}=8x^3-12x"
"H'_3(x)=24x^2-12=6(4x^2-2)=6H_2(x)"
Comments
Leave a comment