Ft[f]=12π∫−∞+∞f(t)e−iwtdt=12π∫−πeπesin3te−iwtdt=F_t[f]=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{+\infty}f(t)e^{-iwt}dt=\frac{1}{\sqrt{2\pi}}\int\limits_{-\pi e}^{\pi e}sin3te^{-iwt}dt=Ft[f]=2π1−∞∫+∞f(t)e−iwtdt=2π1−πe∫πesin3te−iwtdt=
=12πe−iwt3cos3t−iwsin3tw2−9−πeπe=i2π(sinπe(w+3)w+3−sinπe(w−3)w−3)=\frac{1}{\sqrt{2\pi}}\frac{e^{-iwt}3\cos3t-iw\sin3t}{w^2-9}_{-\pi e}^{\pi e}=\frac{i}{\sqrt{2\pi}}\left( \frac{\sin\pi e(w+3)}{w+3}-\frac{\sin\pi e(w-3)}{w-3}\right)=2π1w2−9e−iwt3cos3t−iwsin3t−πeπe=2πi(w+3sinπe(w+3)−w−3sinπe(w−3))
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments