Answer:
We are given: "f(t) = t^2e^{2t}"
We need to find out the Laplace transform of "f(t)=t^2e^{2t}"
Apply Laplace transformation rule, where "f(t)=e^{2t},k=2"
We need to compute "\\frac{d^2}{ds^2}(\\frac{1}{s-1})"
Solve by using the chain rule
"\\frac{d}{ds}(\\frac{1}{s-1})=-\\frac{1}{(s-2)^2}\\frac{d}{ds}(s-2)=-\\frac{1}{(s-2)^2}"
Solve by using the chain rule
"\\frac{d^2}{ds^2}(\\frac{1}{s-2})=\\frac{d^2}{ds^2}(-\\frac{1}{(s-2)^2})=\\frac{2}{(s-2)^2}\\frac{d}{ds}(s-2)=\\frac{2}{(s-2)^3}"
Hence "\\fbox{L\\{$t^2e^{2t}$\\}=$\\frac{2}{(s-2)^3}$}"
Comments
Leave a comment