Question #102651
Determine the Laplace transform of
f(t)=t^2e^2t
1
Expert's answer
2020-02-20T09:59:07-0500

Answer:


We are given: f(t)=t2e2tf(t) = t^2e^{2t}


We need to find out the Laplace transform of f(t)=t2e2tf(t)=t^2e^{2t}


Apply Laplace transformation rule, where f(t)=e2t,k=2f(t)=e^{2t},k=2


We need to compute d2ds2(1s1)\frac{d^2}{ds^2}(\frac{1}{s-1})


Solve by using the chain rule

dds(1s1)=1(s2)2dds(s2)=1(s2)2\frac{d}{ds}(\frac{1}{s-1})=-\frac{1}{(s-2)^2}\frac{d}{ds}(s-2)=-\frac{1}{(s-2)^2}


Solve by using the chain rule

d2ds2(1s2)=d2ds2(1(s2)2)=2(s2)2dds(s2)=2(s2)3\frac{d^2}{ds^2}(\frac{1}{s-2})=\frac{d^2}{ds^2}(-\frac{1}{(s-2)^2})=\frac{2}{(s-2)^2}\frac{d}{ds}(s-2)=\frac{2}{(s-2)^3}



Hence L{t2e2t}=2(s2)3\fbox{L\{$t^2e^{2t}$\}=$\frac{2}{(s-2)^3}$}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS