f(x,y)=sin(x)+csc(x2y)+2xyf(x,y)=sin(x)+csc(x^2y)+2xyf(x,y)=sin(x)+csc(x2y)+2xy
∂f∂x=cos(x)−2xycos(x2y)sin2(x2y)+2y\frac{\partial f}{\partial x}=cos(x)-2xy\frac{cos(x^2y)}{sin^2(x^2y)}+2y∂x∂f=cos(x)−2xysin2(x2y)cos(x2y)+2y
∂f∂y=−x2cos(x2y)sin2(x2y)+2x\frac{\partial f}{\partial y}=-x^2\frac{cos(x^2y)}{sin^2(x^2y)}+2x∂y∂f=−x2sin2(x2y)cos(x2y)+2x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments