Taking Laplace transform, we get;
"(s^2y^{-}(s)-sy(0)-y'(0))-3(sy^{-}(s)-y'(0))+2y^{-}(s)=L(6e^{-t})"
"(s^2y^{-}(s)-3s-3)-3(sy^{-}(s)-3)+2y^{-}(s)=6\/(s+1)"
"(s^2-3s+2)y^{-}(s)=3(s-2)+6\/(s+1)=(3s^2-3s)\/(s+1)"
"\\implies y^{-}(s)=3s\/(s+1)(s-2)"
Taking inverse Laplace transform, we get;
"y(x)=L^{-1}(3s\/(s+1)(s-2))"
"y(x)=L^{-1}(A\/(s+1)+B\/(s-2))"
"\\implies 3s=A(s-2)+B(s+1)"
Equating the coefficients to solve for A,B we get;
"A+B=3;-2A+B=0"
Solving these equations, we get; "A=1;B=2"
"y(x)=L^{-1}((1\/(s+1)+2\/(s-2))"
"=L^{-1}(1\/(s-(-1)))+2L^{-1}(1\/(s-2))"
"=e^{-x}+2e^{2x}" ---(Answer)
Comments
Leave a comment