Taking Laplace transform, we get;
(s2y−(s)−sy(0)−y′(0))−3(sy−(s)−y′(0))+2y−(s)=L(6e−t)
(s2y−(s)−3s−3)−3(sy−(s)−3)+2y−(s)=6/(s+1)
(s2−3s+2)y−(s)=3(s−2)+6/(s+1)=(3s2−3s)/(s+1)
⟹y−(s)=3s/(s+1)(s−2)
Taking inverse Laplace transform, we get;
y(x)=L−1(3s/(s+1)(s−2))
y(x)=L−1(A/(s+1)+B/(s−2))
⟹3s=A(s−2)+B(s+1)
Equating the coefficients to solve for A,B we get;
A+B=3;−2A+B=0
Solving these equations, we get; A=1;B=2
y(x)=L−1((1/(s+1)+2/(s−2))
=L−1(1/(s−(−1)))+2L−1(1/(s−2))
=e−x+2e2x ---(Answer)
Comments
Leave a comment