Answer to Question #102652 in Calculus for BIVEK SAH

Question #102652
Using the method of Laplace transforms, solve the following initial value problem:

y"-3y'+2y=6e^-t; y(0)=3,y'(0)=3
1
Expert's answer
2020-03-04T09:07:10-0500

Taking Laplace transform, we get;

(s2y(s)sy(0)y(0))3(sy(s)y(0))+2y(s)=L(6et)(s^2y^{-}(s)-sy(0)-y'(0))-3(sy^{-}(s)-y'(0))+2y^{-}(s)=L(6e^{-t})

(s2y(s)3s3)3(sy(s)3)+2y(s)=6/(s+1)(s^2y^{-}(s)-3s-3)-3(sy^{-}(s)-3)+2y^{-}(s)=6/(s+1)

(s23s+2)y(s)=3(s2)+6/(s+1)=(3s23s)/(s+1)(s^2-3s+2)y^{-}(s)=3(s-2)+6/(s+1)=(3s^2-3s)/(s+1)

    y(s)=3s/(s+1)(s2)\implies y^{-}(s)=3s/(s+1)(s-2)

Taking inverse Laplace transform, we get;

y(x)=L1(3s/(s+1)(s2))y(x)=L^{-1}(3s/(s+1)(s-2))

y(x)=L1(A/(s+1)+B/(s2))y(x)=L^{-1}(A/(s+1)+B/(s-2))

    3s=A(s2)+B(s+1)\implies 3s=A(s-2)+B(s+1)

Equating the coefficients to solve for A,B we get;

A+B=3;2A+B=0A+B=3;-2A+B=0

Solving these equations, we get; A=1;B=2A=1;B=2

y(x)=L1((1/(s+1)+2/(s2))y(x)=L^{-1}((1/(s+1)+2/(s-2))

=L1(1/(s(1)))+2L1(1/(s2))=L^{-1}(1/(s-(-1)))+2L^{-1}(1/(s-2))

=ex+2e2x=e^{-x}+2e^{2x} ---(Answer)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment