Show that
J0(x)-J2 (x)=2d/dx[J1 (x)]
Solution:-
2"J'_1(x)=J"1-1(x)-"J"1+1(x)
"2J_1'(x)=J_0(x)-J_2(x)"
We Know that :-
"xJ'_1(x)=J_1(x)-xJ" 2(x) ...........(1)
"xJ_1'(x)=-J_1(x)+xJ" 0(x) ............(2)
Adding Equation 1 and 2 we have
2x"J'_1(x)=J_1(x)-J_1(x)-xJ" 2(x)"+xJ"0(x)
"2xJ'_1(x)=x(J" 0(x)-"J" 2(x))
"2J'_1(x)=J"0(x)-"J"2 (x)
Comments
Leave a comment