∫ x 2 9 − x 2 d x \int\frac{x^2}{\sqrt{9-x^2}}dx ∫ 9 − x 2 x 2 d x We will replace the variables:
x = 3 sin t − > d x = 3 cos t d t x=3\sin{t} -> dx=3\cos{t} dt x = 3 sin t − > d x = 3 cos t d t .
∫ 27 sin 2 t cos t 9 − 9 sin 2 t d t = ∫ 27 sin 2 t cos t 3 1 − sin 2 t d t = ∫ 9 sin 2 t cos t cos t d t = 9 ∫ sin 2 t d t \int\frac{27\sin^2{t}\cos{t}}{\sqrt{9-9\sin^2{t}}}dt=\int \frac{27\sin^2{t}\cos{t}}{3\sqrt{1-\sin^2{t}}}dt=\int\frac{9\sin^2{t}\cos{t}}{\cos{t}}dt=9\int\sin^2{t} dt ∫ 9 − 9 s i n 2 t 27 s i n 2 t c o s t d t = ∫ 3 1 − s i n 2 t 27 s i n 2 t c o s t d t = ∫ c o s t 9 s i n 2 t c o s t d t = 9 ∫ sin 2 t d t
Use transformation:
sin 2 t = 1 − cos 2 t 2 \sin^2{t}=\frac{1-\cos{2t}}{2} sin 2 t = 2 1 − c o s 2 t ,
then we get
9 ∫ sin 2 t d t = 9 ∫ 1 − cos 2 t 2 d t = 9 2 ∫ ( 1 − cos 2 t ) d t = 9 2 ( t − 1 2 sin 2 t ) + C = 9 2 ( t − sin t cos t ) + C 9\int \sin^2{t}dt=9\int \frac{1-\cos{2t}}{2}dt=\frac{9}{2}\int (1-\cos{2t})dt=\frac{9}{2}(t-\frac{1}{2}\sin{2t})+C=\frac{9}{2}(t-\sin{t}\cos{t})+C 9 ∫ sin 2 t d t = 9 ∫ 2 1 − c o s 2 t d t = 2 9 ∫ ( 1 − cos 2 t ) d t = 2 9 ( t − 2 1 sin 2 t ) + C = 2 9 ( t − sin t cos t ) + C
where C C C - contact.
t = arcsin x 3 t=\arcsin{\frac{x}{3}} t = arcsin 3 x
sin t = x 3 \sin{t}=\frac{x}{3} sin t = 3 x
cos t = 1 − sin 2 t = 1 − x 2 9 \cos{t}=\sqrt{1-\sin^2{t}}=\sqrt{1-\frac{x^2}{9}} cos t = 1 − sin 2 t = 1 − 9 x 2
9 2 ( t − sin t cos t ) + C = 9 2 ( arcsin x 3 − x 3 1 − x 2 9 ) + C = 9 arcsin x 3 − x 9 − x 2 2 + C \frac{9}{2}(t-\sin{t}\cos{t})+C=\frac{9}{2}(\arcsin{\frac{x}{3}}-\frac{x}{3}\sqrt{1-\frac{x^2}{9}})+C=\frac{9\arcsin{\frac{x}{3}}-x\sqrt{9-x^2}}{2}+C 2 9 ( t − sin t cos t ) + C = 2 9 ( arcsin 3 x − 3 x 1 − 9 x 2 ) + C = 2 9 a r c s i n 3 x − x 9 − x 2 + C
Answer:
∫ x 2 9 − x 2 d x = 9 arcsin x 3 − x 9 − x 2 2 + C \int\frac{x^2}{\sqrt{9-x^2}}dx=\frac{9\arcsin{\frac{x}{3}}-x\sqrt{9-x^2}}{2}+C ∫ 9 − x 2 x 2 d x = 2 9 a r c s i n 3 x − x 9 − x 2 + C
Comments