We will replace the variables:
"x=3\\sin{t} -> dx=3\\cos{t} dt".
"\\int\\frac{27\\sin^2{t}\\cos{t}}{\\sqrt{9-9\\sin^2{t}}}dt=\\int \\frac{27\\sin^2{t}\\cos{t}}{3\\sqrt{1-\\sin^2{t}}}dt=\\int\\frac{9\\sin^2{t}\\cos{t}}{\\cos{t}}dt=9\\int\\sin^2{t} dt"
Use transformation:
"\\sin^2{t}=\\frac{1-\\cos{2t}}{2}",
then we get
"9\\int \\sin^2{t}dt=9\\int \\frac{1-\\cos{2t}}{2}dt=\\frac{9}{2}\\int (1-\\cos{2t})dt=\\frac{9}{2}(t-\\frac{1}{2}\\sin{2t})+C=\\frac{9}{2}(t-\\sin{t}\\cos{t})+C"
where "C" - contact.
"t=\\arcsin{\\frac{x}{3}}"
"\\sin{t}=\\frac{x}{3}"
"\\cos{t}=\\sqrt{1-\\sin^2{t}}=\\sqrt{1-\\frac{x^2}{9}}"
"\\frac{9}{2}(t-\\sin{t}\\cos{t})+C=\\frac{9}{2}(\\arcsin{\\frac{x}{3}}-\\frac{x}{3}\\sqrt{1-\\frac{x^2}{9}})+C=\\frac{9\\arcsin{\\frac{x}{3}}-x\\sqrt{9-x^2}}{2}+C"
Answer:
"\\int\\frac{x^2}{\\sqrt{9-x^2}}dx=\\frac{9\\arcsin{\\frac{x}{3}}-x\\sqrt{9-x^2}}{2}+C"
Comments
Leave a comment