FIND THE MAXIMUM AND THE MINIMUM VALUES OF
3 X 4- 2 X 3 - 6 X 2 + 6 X + 1 IN THE INTERVAL [0,2] IF THEY EXIST
f(x)=3 X 4 - 2 X 3 - 6 X 2+ 6 X + 1
f'(x)=12 x 3-6 x 2-12 x+6
12 x 3-6 x 2-12 x+6=0
6(2 x 3-x 2-2 x+1)=0
by finding synthetic division
the roots are
x=1,-1,1/2
critical points are 0,1/2,1,2
f(1)=3-2-6+6+1
f(1)=2
f(1/2)=3(1/2) 4-2(1/2)3-6(1/2)2+6(1/2)+1
=39/16
f(0)=1
f(2)=3(2 4)-2(x 3)-6(22)+6(2)+1
=21
minimum is at (0,1),minimum is at (1,2), maximum is at (1/2,39/16), maximum is at (2,21).
Absolute maximum=21.
Absolute minimum=1,
local minima=2,
local maxima=39/16,
the domain is (- infinity ,+ infinity).
Comments
Leave a comment