"I=\\int \\frac{x^2}{\\left(9-x^2\\right)^{\\frac{1}{2}}}dx"
Let "x = 3 sin(z)"
"\\Rightarrow dx=3cos(z)dz"
substituting these value in "I"
"I=\\int \\frac{9sin^2\\left(z\\right)}{\\left(9-9sin^2(z)\\right)^{\\frac{1}{2}}}\\cdot 3cos\\left(z\\right)dz"
"=\\int \\frac{9sin^2\\left(z\\right)}{\\left(9\\left(1-sin^2\\left(z\\right)\\right)\\right)^{\\frac{1}{2}}}\\cdot 3cos\\left(z\\right)dz"
"=\\int\\frac{9sin^2\\left(z\\right)}{\\left(9cos^2\\left(z\\right)\\right)^{\\frac{1}{2}}}\\cdot 3cos\\left(z\\right)dz"
"=\\int\\frac{9sin^2\\left(z\\right)}{3cosz}\\cdot 3cos\\left(z\\right)dz"
"=9\\int sin^2(z)dz"
"=9 \\int \\:\\frac{1-cos(2z)}{2}dz" as "cos(2z)=1-2sin^2(z)"
"=\\frac{9}{2}\\int \\:\\left(1-cos\\left(2z\\right)\\right)dz"
"=\\frac{9}{2}\\left(z-\\frac{sin\\left(2z\\right)}{2}\\right)+C"
We assumed "x=3sin(z)"
"\\Rightarrow" "sin(z)=\\frac{x}3"
"z=sin^{-1}(\\frac{x}{3})"
substituting back these value
"I=\\frac{9}{2}\\left(sin^{-1}\\left(\\frac{x}{3}\\right)-\\frac{1}{2}sin\\left(2sin^{-1}\\left(\\frac{x}{3}\\right)\\right)\\right)+C"
where C is the constant of integration.
Comments
Leave a comment