Question #103228
Integrate x²dx/(9-x²)½ using trigonometric substitution
1
Expert's answer
2020-02-21T09:38:13-0500

I=x2(9x2)12dxI=\int \frac{x^2}{\left(9-x^2\right)^{\frac{1}{2}}}dx

Let x=3sin(z)x = 3 sin(z)

dx=3cos(z)dz\Rightarrow dx=3cos(z)dz

substituting these value in II

I=9sin2(z)(99sin2(z))123cos(z)dzI=\int \frac{9sin^2\left(z\right)}{\left(9-9sin^2(z)\right)^{\frac{1}{2}}}\cdot 3cos\left(z\right)dz

=9sin2(z)(9(1sin2(z)))123cos(z)dz=\int \frac{9sin^2\left(z\right)}{\left(9\left(1-sin^2\left(z\right)\right)\right)^{\frac{1}{2}}}\cdot 3cos\left(z\right)dz

=9sin2(z)(9cos2(z))123cos(z)dz=\int\frac{9sin^2\left(z\right)}{\left(9cos^2\left(z\right)\right)^{\frac{1}{2}}}\cdot 3cos\left(z\right)dz

=9sin2(z)3cosz3cos(z)dz=\int\frac{9sin^2\left(z\right)}{3cosz}\cdot 3cos\left(z\right)dz

=9sin2(z)dz=9\int sin^2(z)dz

=91cos(2z)2dz=9 \int \:\frac{1-cos(2z)}{2}dz as cos(2z)=12sin2(z)cos(2z)=1-2sin^2(z)

=92(1cos(2z))dz=\frac{9}{2}\int \:\left(1-cos\left(2z\right)\right)dz

=92(zsin(2z)2)+C=\frac{9}{2}\left(z-\frac{sin\left(2z\right)}{2}\right)+C

We assumed x=3sin(z)x=3sin(z)

\Rightarrow sin(z)=x3sin(z)=\frac{x}3

z=sin1(x3)z=sin^{-1}(\frac{x}{3})

substituting back these value


I=92(sin1(x3)12sin(2sin1(x3)))+CI=\frac{9}{2}\left(sin^{-1}\left(\frac{x}{3}\right)-\frac{1}{2}sin\left(2sin^{-1}\left(\frac{x}{3}\right)\right)\right)+C

where C is the constant of integration.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS