I=∫(9−x2)21x2dx
Let x=3sin(z)
⇒dx=3cos(z)dz
substituting these value in I
I=∫(9−9sin2(z))219sin2(z)⋅3cos(z)dz
=∫(9(1−sin2(z)))219sin2(z)⋅3cos(z)dz
=∫(9cos2(z))219sin2(z)⋅3cos(z)dz
=∫3cosz9sin2(z)⋅3cos(z)dz
=9∫sin2(z)dz
=9∫21−cos(2z)dz as cos(2z)=1−2sin2(z)
=29∫(1−cos(2z))dz
=29(z−2sin(2z))+C
We assumed x=3sin(z)
⇒ sin(z)=3x
z=sin−1(3x)
substituting back these value
I=29(sin−1(3x)−21sin(2sin−1(3x)))+C
where C is the constant of integration.
Comments