Question #103229
Integrate dx/(4+x²)½ using trigonometric substitution
1
Expert's answer
2020-02-24T12:22:13-0500

Integrate d x/(4+x²)½ using trigonometric substitution

Suppose tanθ=x2tan\theta={x \above{2pt} 2}

by applying cross multiplication

x=2tanθtan\theta

dx=2sec2θdx=2sec^2\theta

dxx2+4\int {dx\above{2pt}\sqrt{x^2+4} }

=2sec2θ4tan2θ+4dθ=\int{2sec^2 \theta\above{2pt}\sqrt{4tan^2\theta+4} } d\theta

=2sec2θ4(tan2θ+1)dθ=\int{2sec^2\theta \above{2pt}\sqrt{4(tan^2\theta+1)} } d\theta

using trigonometric identity tan2θ+1=sec2θtan^2\theta+1=sec^2\theta

== 2sec2θ4(sec2θ)dθ\int{2sec^2\theta\above{2pt}\sqrt{4(sec^2\theta)} }d\theta

=2sec2θ2secθdθ=\int{2sec^2\theta\above{2pt} 2sec\theta} d\theta

== secθdθ\int sec\theta d\theta

multiplying and divided both sides by secθ+tanθsec\theta+tan\theta

=secθ(secθ+tanθsecθ+tanθ)dθ=\int sec\theta({sec\theta+tan\theta \above{2pt} sec\theta+tan\theta}) d\theta

=sec2θ+tanθsecθsecθ+tanθdθ=\int{ sec^2\theta+tan\theta sec\theta\above{2pt} sec\theta+tan\theta}d\theta

Substitute u=secθ+tanθsec\theta+tan\theta (A)

du=(secθtanθ+sec2θ)dθdu=(sec\theta tan\theta+sec^2\theta)d\theta

=duu=\int {du \above{2pt} u}

=lnu+C=ln|u|+C

By putting the value of u

=lnsecθ+tanθ+C=ln|sec\theta+tan\theta|+C (1)


Replace θ\theta terms with x

tanθtan\theta =x2={x \above{2pt} 2}

taking square on both sides

tan2θ=(x2)2tan^2\theta=({x \above{2pt} 2})^2

sec2θ1=x24sec^2\theta-1={x^2 \above{2pt} 4}

sec2θ=x44+1sec^2\theta={x^4\above{2pt} 4}+1

sec2θ=x2+44sec^2\theta={x^2+4 \above{2pt} 4}

taking square root on both sides

secθ=x2+42sec\theta={ \sqrt{x^2+4}\above{2pt} 2}

By putting the value in equation no 1

=ln(x2+42+x2)+C=ln( { \sqrt{x^2+4} \above{2pt} 2}+{x\above{2pt} 2} )+C Answer



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS