Integrate d x/(4+x²)½ using trigonometric substitution
Suppose tanθ=2x
by applying cross multiplication
x=2tanθ
dx=2sec2θ
∫x2+4dx
=∫4tan2θ+42sec2θdθ
=∫4(tan2θ+1)2sec2θdθ
using trigonometric identity tan2θ+1=sec2θ
= ∫4(sec2θ)2sec2θdθ
=∫2secθ2sec2θdθ
= ∫secθdθ
multiplying and divided both sides by secθ+tanθ
=∫secθ(secθ+tanθsecθ+tanθ)dθ
=∫secθ+tanθsec2θ+tanθsecθdθ
Substitute u=secθ+tanθ (A)
du=(secθtanθ+sec2θ)dθ
=∫udu
=ln∣u∣+C
By putting the value of u
=ln∣secθ+tanθ∣+C (1)
Replace θ terms with x
tanθ =2x
taking square on both sides
tan2θ=(2x)2
sec2θ−1=4x2
sec2θ=4x4+1
sec2θ=4x2+4
taking square root on both sides
secθ=2x2+4
By putting the value in equation no 1
=ln(2x2+4+2x)+C Answer
Comments