Integrate d x/(4+x²)½ using trigonometric substitution
Suppose "tan\\theta={x \\above{2pt} 2}"
by applying cross multiplication
x=2"tan\\theta"
"dx=2sec^2\\theta"
"\\int {dx\\above{2pt}\\sqrt{x^2+4} }"
"=\\int{2sec^2 \\theta\\above{2pt}\\sqrt{4tan^2\\theta+4} } d\\theta"
"=\\int{2sec^2\\theta \\above{2pt}\\sqrt{4(tan^2\\theta+1)} } d\\theta"
using trigonometric identity "tan^2\\theta+1=sec^2\\theta"
"=" "\\int{2sec^2\\theta\\above{2pt}\\sqrt{4(sec^2\\theta)} }d\\theta"
"=\\int{2sec^2\\theta\\above{2pt} 2sec\\theta} d\\theta"
"=" "\\int sec\\theta d\\theta"
multiplying and divided both sides by "sec\\theta+tan\\theta"
"=\\int sec\\theta({sec\\theta+tan\\theta \\above{2pt} sec\\theta+tan\\theta}) d\\theta"
"=\\int{ sec^2\\theta+tan\\theta sec\\theta\\above{2pt} sec\\theta+tan\\theta}d\\theta"
Substitute u="sec\\theta+tan\\theta" (A)
"du=(sec\\theta tan\\theta+sec^2\\theta)d\\theta"
"=\\int {du \\above{2pt} u}"
"=ln|u|+C"
By putting the value of u
"=ln|sec\\theta+tan\\theta|+C" (1)
Replace "\\theta" terms with x
"tan\\theta" "={x \\above{2pt} 2}"
taking square on both sides
"tan^2\\theta=({x \\above{2pt} 2})^2"
"sec^2\\theta-1={x^2 \\above{2pt} 4}"
"sec^2\\theta={x^4\\above{2pt} 4}+1"
"sec^2\\theta={x^2+4 \\above{2pt} 4}"
taking square root on both sides
"sec\\theta={ \\sqrt{x^2+4}\\above{2pt} 2}"
By putting the value in equation no 1
"=ln( { \\sqrt{x^2+4} \\above{2pt} 2}+{x\\above{2pt} 2} )+C" Answer
Comments
Leave a comment