Integrate d x/(4+x²)½ using trigonometric substitution
Suppose t a n θ = x 2 tan\theta={x \above{2pt} 2} t an θ = 2 x
by applying cross multiplication
x=2 t a n θ tan\theta t an θ
d x = 2 s e c 2 θ dx=2sec^2\theta d x = 2 se c 2 θ
∫ d x x 2 + 4 \int {dx\above{2pt}\sqrt{x^2+4} } ∫ x 2 + 4 d x
= ∫ 2 s e c 2 θ 4 t a n 2 θ + 4 d θ =\int{2sec^2 \theta\above{2pt}\sqrt{4tan^2\theta+4} } d\theta = ∫ 4 t a n 2 θ + 4 2 se c 2 θ d θ
= ∫ 2 s e c 2 θ 4 ( t a n 2 θ + 1 ) d θ =\int{2sec^2\theta \above{2pt}\sqrt{4(tan^2\theta+1)} } d\theta = ∫ 4 ( t a n 2 θ + 1 ) 2 se c 2 θ d θ
using trigonometric identity t a n 2 θ + 1 = s e c 2 θ tan^2\theta+1=sec^2\theta t a n 2 θ + 1 = se c 2 θ
= = = ∫ 2 s e c 2 θ 4 ( s e c 2 θ ) d θ \int{2sec^2\theta\above{2pt}\sqrt{4(sec^2\theta)} }d\theta ∫ 4 ( se c 2 θ ) 2 se c 2 θ d θ
= ∫ 2 s e c 2 θ 2 s e c θ d θ =\int{2sec^2\theta\above{2pt} 2sec\theta} d\theta = ∫ 2 sec θ 2 se c 2 θ d θ
= = = ∫ s e c θ d θ \int sec\theta d\theta ∫ sec θ d θ
multiplying and divided both sides by s e c θ + t a n θ sec\theta+tan\theta sec θ + t an θ
= ∫ s e c θ ( s e c θ + t a n θ s e c θ + t a n θ ) d θ =\int sec\theta({sec\theta+tan\theta \above{2pt} sec\theta+tan\theta}) d\theta = ∫ sec θ ( sec θ + t an θ sec θ + t an θ ) d θ
= ∫ s e c 2 θ + t a n θ s e c θ s e c θ + t a n θ d θ =\int{ sec^2\theta+tan\theta sec\theta\above{2pt} sec\theta+tan\theta}d\theta = ∫ sec θ + t an θ se c 2 θ + t an θ sec θ d θ
Substitute u=s e c θ + t a n θ sec\theta+tan\theta sec θ + t an θ (A)
d u = ( s e c θ t a n θ + s e c 2 θ ) d θ du=(sec\theta tan\theta+sec^2\theta)d\theta d u = ( sec θt an θ + se c 2 θ ) d θ
= ∫ d u u =\int {du \above{2pt} u} = ∫ u d u
= l n ∣ u ∣ + C =ln|u|+C = l n ∣ u ∣ + C
By putting the value of u
= l n ∣ s e c θ + t a n θ ∣ + C =ln|sec\theta+tan\theta|+C = l n ∣ sec θ + t an θ ∣ + C (1)
Replace θ \theta θ terms with x
t a n θ tan\theta t an θ = x 2 ={x \above{2pt} 2} = 2 x
taking square on both sides
t a n 2 θ = ( x 2 ) 2 tan^2\theta=({x \above{2pt} 2})^2 t a n 2 θ = ( 2 x ) 2
s e c 2 θ − 1 = x 2 4 sec^2\theta-1={x^2 \above{2pt} 4} se c 2 θ − 1 = 4 x 2
s e c 2 θ = x 4 4 + 1 sec^2\theta={x^4\above{2pt} 4}+1 se c 2 θ = 4 x 4 + 1
s e c 2 θ = x 2 + 4 4 sec^2\theta={x^2+4 \above{2pt} 4} se c 2 θ = 4 x 2 + 4
taking square root on both sides
s e c θ = x 2 + 4 2 sec\theta={ \sqrt{x^2+4}\above{2pt} 2} sec θ = 2 x 2 + 4
By putting the value in equation no 1
= l n ( x 2 + 4 2 + x 2 ) + C =ln( { \sqrt{x^2+4} \above{2pt} 2}+{x\above{2pt} 2} )+C = l n ( 2 x 2 + 4 + 2 x ) + C Answer
Comments