1.
"\\int_{-4}^2[2-x^2-(3x+2)]dx=\\int_{-4}^2(-x^2-3x)dx=(-\\frac{x^3}{3}-\\frac{3x^2}{2})|_{x=-4}^{x=2}=-6."
2.
"A=\\int_{-4}^{-3}[(3x+2)-(2-x^2)]dx+\\int_{-3}^0[2-x^2-(3x+2)]dx+\\\\+\\int_0^2[(3x+2)-(2-x^2)]dx="
"=\\int_{-4}^{-3}(x^2+3x)dx+\\int_{-3}^0(-x^2-3x)dx+\\int_0^2(x^2+3x)dx="
"=(\\frac{x^3}{3}+\\frac{3x^2}{2})|_{x=-4}^{x=-3}+(-\\frac{x^3}{3}-\\frac{3x^2}{2})|_{x=-3}^{x=0}+(\\frac{x^3}{3}+\\frac{3x^2}{2})|_{x=0}^{x=2}=\\frac{11}{6}+\\frac{9}{2}+\\frac{26}{3}=15."
Answers are different because the area between two curves is always positive and in our case
includes three parts:
-4<x<-3 where g(x)>f(x)
-3<x<0 where f(x)>g(x) and
0<x<2 where g(x)>f(x).
Comments
Leave a comment