1.
∫−42[2−x2−(3x+2)]dx=∫−42(−x2−3x)dx=(−3x3−23x2)∣x=−4x=2=−6.
2.
A=∫−4−3[(3x+2)−(2−x2)]dx+∫−30[2−x2−(3x+2)]dx++∫02[(3x+2)−(2−x2)]dx=
=∫−4−3(x2+3x)dx+∫−30(−x2−3x)dx+∫02(x2+3x)dx=
=(3x3+23x2)∣x=−4x=−3+(−3x3−23x2)∣x=−3x=0+(3x3+23x2)∣x=0x=2=611+29+326=15.
Answers are different because the area between two curves is always positive and in our case
includes three parts:
-4<x<-3 where g(x)>f(x)
-3<x<0 where f(x)>g(x) and
0<x<2 where g(x)>f(x).
Comments