Question #101487
Integrate using the fractional fracture development (point b). For a and c, first divide by the division angle.

a.) ∫3x2+2x+2/x-3 dx

b.) ∫3/x2-1 dx

c.) ∫2x2+x/x+2 dx
1
Expert's answer
2020-01-20T10:15:41-0500

Solution.

a. We write the integral in the form


3x2+2x+2x3dx=3x(x3)+11x+2x3dx=\intop \frac {3x^2+2x+2}{x-3}dx=\intop \frac {3x(x-3)+11x+2}{x-3}dx=

=3x(x3)+11(x3)+35x3dx=(3x+11+35x3)dx=\intop \frac {3x(x-3)+11(x-3)+35}{x-3}dx= \intop (3x+11+\frac{35} {x-3})dx

Using the tabular values of the antiderivative we get

3x2+2x+2x3dx=3x22+11x+35lnx3+C\intop \frac {3x^2+2x+2}{x-3}dx= \frac{3x^2}{2}+11x+35 ln |x-3| +C

where C is constant.

b. Represent the fraction 3/x2-1 as the sum of two fractions


3x21=Ax1+Bx+1=Ax+A+BxBx21\frac {3} {x^2-1}=\frac{A}{x-1} + \frac {B}{x+1}= \frac{Ax+A+Bx-B}{x^2-1}

Comparing the coefficients near the powers of x we get the system of equations


{A+B=0AB=3    {A=32B=32\begin{cases} A+B=0 \\ A-B=3 \end{cases} \implies \begin{cases} A=\frac{3}{2} \\ B=-\frac {3}{2} \end{cases}

We write the integral in the form

3x21dx=32(1x11x+1)dx\intop \frac {3}{x^2-1}dx=\frac {3}{2} \intop (\frac{1}{x-1}-\frac{1}{x+1})dx

Using the tabular values of the antiderivative we get


3x21dx=32lnx132lnx+1+C=32lnx1x+1+C\intop \frac {3}{x^2-1}dx=\frac{3}{2} ln|x-1|-\frac{3}{2} ln|x+1|+C=\frac{3}{2} ln \frac {|x-1|}{|x+1|}+C

where C is constant.

c. We write the integral in the form


2x2+xx+2dx=2x(x+2)3xx+2dx=\intop \frac {2x^2+x}{x+2}dx=\intop \frac {2x(x+2)-3x}{x+2}dx=

2x(x+2)3(x+2)+6x+2dx=(2x3+6x+2)dx\intop \frac {2x(x+2)-3(x+2) +6}{x+2}dx=\intop (2x-3+\frac {6}{x+2})dx

Using the tabular values of the antiderivative we get


2x2+xx+2dx=x23x+6lnx+2+C\intop \frac {2x^2+x}{x+2}dx=x^2-3x+6ln|x+2|+C

where C is constant.

Answer. a.


3x2+2x+2x3dx=3x22+11x+35lnx3+C\intop \frac {3x^2+2x+2}{x-3}dx= \frac{3x^2}{2}+11x+35 ln |x-3| +C

where C is constant.

b.


3x21dx=32lnx1x+1+C\intop \frac {3}{x^2-1}dx=\frac{3}{2} ln \frac {|x-1|}{|x+1|}+C

where C is constant.

c.


2x2+xx+2dx=x23x+6lnx+2+C\intop \frac {2x^2+x}{x+2}dx=x^2-3x+6ln|x+2|+C

where C is constant.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS