V=∫−aaπ((a23−y23)32)2dy==π∫−aa(a23−y23)3dy==π∫−aa(a2−3a43y23+3a23y43−y2)dy==π(a2y−3a4335y53+3a2337y73−13y3)∣−aa==π((a3−95a3+97a3−13a3)−−(−a3+95a3−97a3+13a3))==π(16105a3+16105a3)==π32105a3V=\int_{-a}^{a}\pi((a^{\frac {2}{3}}-y^{\frac {2}{3}})^\frac {3}{2})^2dy=\\ =\pi \int_{-a}^{a}(a^{\frac {2}{3}}-y^{\frac {2}{3}})^{3}dy=\\ =\pi\int_{-a}^{a}(a^{2}-3a^{\frac{4}{3}}y^{\frac {2}{3}}+3a^\frac {2}{3}y^{\frac{4}{3}}-y^2)dy=\\ =\pi(a^{2}y-3a^{\frac{4}{3}}\frac{3}{5}y^{\frac {5}{3}}+3a^\frac {2}{3}\frac{3}{7}y^{\frac{7}{3}}-\frac{1}{3}y^3)|^{a}_{-a}=\\ =\pi((a^{3}-{\frac{9}{5}}a^{3}+\frac {9}{7}a^{3}-\frac{1}{3}a^3)-\\-(-a^{3}+{\frac{9}{5}}a^{3}-\frac {9}{7}a^{3}+\frac{1}{3}a^3))=\\ =\pi(\frac{16}{105}a^{3}+\frac{16}{105}a^{3})=\\ =\pi\frac{32}{105}a^{3}V=∫−aaπ((a32−y32)23)2dy==π∫−aa(a32−y32)3dy==π∫−aa(a2−3a34y32+3a32y34−y2)dy==π(a2y−3a3453y35+3a3273y37−31y3)∣−aa==π((a3−59a3+79a3−31a3)−−(−a3+59a3−79a3+31a3))==π(10516a3+10516a3)==π10532a3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments