"\\int_{0}^{\\pi} \\int_{0}^{y^2} \\sin\\frac{x}{y}dxdy=\\int_{0}^{\\pi} dy\\int_{0}^{y^2} \\sin\\frac{x}{y}dx=\\\\\n\\\\\n=\\int_{0}^{\\pi}\\left(-y\\cos\\frac{x}{y}\\right)\\mid^{y^2}_{0} dy=\\\\\n\\\\\n=-\\int_{0}^{\\pi}\\left(y\\cos\\frac{y^2}{y} - y\\cos0\\right)dy=\\\\\n\\\\=-\\int_{0}^{\\pi}y\\cos y dy +\\int_{0}^{\\pi}y dy=\\\\\n\\\\\n=-\\left( y\\sin y \\mid^{\\pi}_{0} - \\int_{0}^{\\pi}\\sin y dy\\right) + \\frac{y^2}{2}\\mid^{\\pi}_{0}=\\\\\n\\\\\n=-\\left(\\pi\\sin \\pi - 0 + \\cos y \\mid^{\\pi}_{0}\\right) + \\frac{\\pi^2}{2}=\\\\\n\\\\\n=-\\cos\\pi + \\cos 0 +\\frac{\\pi^2}{2} = 2+\\frac{\\pi^2}{2}"
Comments
Leave a comment