∫0π∫0y2sinxydxdy=∫0πdy∫0y2sinxydx==∫0π(−ycosxy)∣0y2dy==−∫0π(ycosy2y−ycos0)dy==−∫0πycosydy+∫0πydy==−(ysiny∣0π−∫0πsinydy)+y22∣0π==−(πsinπ−0+cosy∣0π)+π22==−cosπ+cos0+π22=2+π22\int_{0}^{\pi} \int_{0}^{y^2} \sin\frac{x}{y}dxdy=\int_{0}^{\pi} dy\int_{0}^{y^2} \sin\frac{x}{y}dx=\\ \\ =\int_{0}^{\pi}\left(-y\cos\frac{x}{y}\right)\mid^{y^2}_{0} dy=\\ \\ =-\int_{0}^{\pi}\left(y\cos\frac{y^2}{y} - y\cos0\right)dy=\\ \\=-\int_{0}^{\pi}y\cos y dy +\int_{0}^{\pi}y dy=\\ \\ =-\left( y\sin y \mid^{\pi}_{0} - \int_{0}^{\pi}\sin y dy\right) + \frac{y^2}{2}\mid^{\pi}_{0}=\\ \\ =-\left(\pi\sin \pi - 0 + \cos y \mid^{\pi}_{0}\right) + \frac{\pi^2}{2}=\\ \\ =-\cos\pi + \cos 0 +\frac{\pi^2}{2} = 2+\frac{\pi^2}{2}∫0π∫0y2sinyxdxdy=∫0πdy∫0y2sinyxdx==∫0π(−ycosyx)∣0y2dy==−∫0π(ycosyy2−ycos0)dy==−∫0πycosydy+∫0πydy==−(ysiny∣0π−∫0πsinydy)+2y2∣0π==−(πsinπ−0+cosy∣0π)+2π2==−cosπ+cos0+2π2=2+2π2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments