1) ∫xx+1dx=[t=x+1;dt=dx;x=t−1]=∫(t−1)tdt.
The last expression contains only table integrals, hence ∫(t−1)tdt=52t5/2−32t3/2+C=52(x+1)5/2−32(x+1)3/2+C.
2) ∫2xx2+1dx=[t=x2+1;dt=2xdx]=∫tdt=32t3/2+C. Returning back to x variable, obtain ∫2xx2+1dx=32(x2+1)3/2+C.
Comments
Leave a comment