1) "\\int x \\sqrt{x+1} dx = [t = x+1; dt = dx; x = t-1] = \\int (t-1)\\sqrt{t} dt".
The last expression contains only table integrals, hence "\\int (t-1)\\sqrt{t} dt = \\frac{2}{5} t^{5\/2} - \\frac{2}{3}t^{3\/2} + C = \\frac{2}{5}(x+1)^{5\/2}-\\frac{2}{3}(x+1)^{3\/2} + C".
2) "\\int 2 x \\sqrt{x^2+1} dx = [t = x^2 + 1; dt = 2 x dx] = \\int \\sqrt{t} dt = \\frac{2}{3}t^{3\/2} + C". Returning back to x variable, obtain "\\int 2 x \\sqrt{x^2+1} dx = \\frac{2}{3}(x^2+1)^{3\/2} + C".
Comments
Leave a comment