V=∭Vdv=∫097dx∫098−78xdy∫7x+8y9dz=V=\iiint\limits_V dv=\int_0^{\frac{9}{7}} dx\int\limits^{\frac{9}{8}-\frac{7}{8}x}_0 dy \int\limits_{7x+8y}^9 dz=V=V∭dv=∫079dx0∫89−87xdy7x+8y∫9dz=
=∫097dx∫098−78x(9−(7x+8y))dy=∫097((9−7x)(98−78x)−4(98−78x)2)dx==\int_0^{\frac{9}{7}} dx\int\limits^{\frac{9}{8}-\frac{7}{8}x}_0 (9-(7x+8y))dy=\int_0^{\frac{9}{7}} \left((9-7x)(\frac{9}{8}-\frac{7}{8}x)-4(\frac{9}{8}-\frac{7}{8}x)^2\right)dx==∫079dx0∫89−87x(9−(7x+8y))dy=∫079((9−7x)(89−87x)−4(89−87x)2)dx=
=(81x16−63x216+49x348)097=243112\left( \frac{81 x}{16} - \frac{63 x^2}{16} +\frac{49 x^3}{48}\right)_0^{\frac{9}{7}}=\frac{243}{112}(1681x−1663x2+4849x3)079=112243
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Dear Sundar, please describe which places and details in a solution should be clarified and explained.
Answer is wrong
Comments
Dear Sundar, please describe which places and details in a solution should be clarified and explained.
Answer is wrong