By the definition, bulk density is
"\\rho=\\frac{m}{V}" Let,
"V_0=195\\,liters\\\\[0.3cm]\n\\Delta V=2.5\\,liters\\\\[0.3cm]\nm_0=42.5\\,kg" Then,
"\\rho=\\overline{\\rho}+\\Delta\\rho,\\,where\\\\[0.3cm]\n\\overline{\\rho}=\\frac{m_0}{V_0}" By the condition of the problem
"\\Delta\\rho=0.03\\cdot\\overline{\\rho}" As we know, to find the random error of indirect measurements, you should use the formulas:
"F(x,y,z,\\ldots)\\longrightarrow\\\\[0.3cm]\n\\Delta F=\\pm\\sqrt{\\left(\\frac{\\partial F}{\\partial x}\\cdot\\Delta x\\right)^2+\\left(\\frac{\\partial F}{\\partial y}\\cdot\\Delta y\\right)^2+\\cdots}" In our case,
"\\rho=\\frac{m}{V}\\longrightarrow\\\\[0.3cm]\n\\Delta\\rho=\\pm\\sqrt{\\left(\\frac{\\partial\\rho}{\\partial m}\\cdot\\Delta m\\right)^2+\\left(\\frac{\\partial\\rho}{\\partial V}\\cdot\\Delta V\\right)^2}\\longrightarrow\\\\[0.3cm]\n(0.03\\cdot\\overline{\\rho})^2=\\left(\\frac{\\Delta m}{V_0}\\right)^2+\\left(-\\frac{m_0\\Delta V}{V_0^2}\\right)^2\\longrightarrow\\\\[0.3cm]\n\\left.\\left(\\frac{\\Delta m}{V_0}\\right)^2=\\left(\\frac{0.03m_0}{V_0}\\right)^2-\\left(-\\frac{m_0\\Delta V}{V_0^2}\\right)^2\\right|\\times V_0^2\\\\[0.3cm]\n(\\Delta m)^2=(0.03m_0)^2-\\left(-\\frac{m_0\\Delta V}{V_0}\\right)^2\\longrightarrow\\\\[0.3cm]\n\\Delta m=m_0\\cdot\\sqrt{0.0081-\\left(\\frac{\\Delta V}{V_0}\\right)^2}=42.5\\cdot\\sqrt{0.0081-\\left(\\frac{2.5}{195}\\right)^2}\\\\[0.3cm]\n\\Delta m\\approx1.15\\,(kg)" ANSWER
"\\Delta m\\approx 1.15\\,kg"
Comments
Leave a comment