Question #100208
The bulk density of the chips was measured by weighing a batch of 195 liters of chips. The measurement result is 42.5kg. The volume was measured to within ± 2.5 liters. At what accuracy should the mass be measured to determine the bulk density to an accuracy of at least ± 3%?
1
Expert's answer
2019-12-13T09:56:41-0500

By the definition, bulk density is


ρ=mV\rho=\frac{m}{V}

Let,


V0=195litersΔV=2.5litersm0=42.5kgV_0=195\,liters\\[0.3cm] \Delta V=2.5\,liters\\[0.3cm] m_0=42.5\,kg

Then,


ρ=ρ+Δρ,whereρ=m0V0\rho=\overline{\rho}+\Delta\rho,\,where\\[0.3cm] \overline{\rho}=\frac{m_0}{V_0}

By the condition of the problem


Δρ=0.03ρ\Delta\rho=0.03\cdot\overline{\rho}

As we know, to find the random error of indirect measurements, you should use the formulas:


F(x,y,z,)ΔF=±(FxΔx)2+(FyΔy)2+F(x,y,z,\ldots)\longrightarrow\\[0.3cm] \Delta F=\pm\sqrt{\left(\frac{\partial F}{\partial x}\cdot\Delta x\right)^2+\left(\frac{\partial F}{\partial y}\cdot\Delta y\right)^2+\cdots}

In our case,


ρ=mVΔρ=±(ρmΔm)2+(ρVΔV)2(0.03ρ)2=(ΔmV0)2+(m0ΔVV02)2(ΔmV0)2=(0.03m0V0)2(m0ΔVV02)2×V02(Δm)2=(0.03m0)2(m0ΔVV0)2Δm=m00.0081(ΔVV0)2=42.50.0081(2.5195)2Δm1.15(kg)\rho=\frac{m}{V}\longrightarrow\\[0.3cm] \Delta\rho=\pm\sqrt{\left(\frac{\partial\rho}{\partial m}\cdot\Delta m\right)^2+\left(\frac{\partial\rho}{\partial V}\cdot\Delta V\right)^2}\longrightarrow\\[0.3cm] (0.03\cdot\overline{\rho})^2=\left(\frac{\Delta m}{V_0}\right)^2+\left(-\frac{m_0\Delta V}{V_0^2}\right)^2\longrightarrow\\[0.3cm] \left.\left(\frac{\Delta m}{V_0}\right)^2=\left(\frac{0.03m_0}{V_0}\right)^2-\left(-\frac{m_0\Delta V}{V_0^2}\right)^2\right|\times V_0^2\\[0.3cm] (\Delta m)^2=(0.03m_0)^2-\left(-\frac{m_0\Delta V}{V_0}\right)^2\longrightarrow\\[0.3cm] \Delta m=m_0\cdot\sqrt{0.0081-\left(\frac{\Delta V}{V_0}\right)^2}=42.5\cdot\sqrt{0.0081-\left(\frac{2.5}{195}\right)^2}\\[0.3cm] \Delta m\approx1.15\,(kg)

ANSWER

Δm1.15kg\Delta m\approx 1.15\,kg


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS