3 L=∫1e1+(dydx)2dx=[dydx=1ey=1x]=∫1e1+1x2dxL=\int\limits_1^e\sqrt{1+\left(\frac{dy}{dx}\right)^2}dx=[\frac{dy}{dx}=\frac{1}{e^y}=\frac{1}{x}]=\int\limits_1^e\sqrt{1+\frac{1}{x^2}}dxL=1∫e1+(dxdy)2dx=[dxdy=ey1=x1]=1∫e1+x21dx
4L=∫011+(dxdy)2dy=[dxdy=11/x=ey]=∫011+e2ydyL=\int\limits_0^1\sqrt{1+\left(\frac{dx}{dy}\right)^2}dy=[\frac{dx}{dy}=\frac{1}{1/x}=e^y]=\int\limits_0^1\sqrt{1+e^{2y}}dyL=0∫11+(dydx)2dy=[dydx=1/x1=ey]=0∫11+e2ydy
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments