Length of the curve is ∫ t 1 t 2 ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 d t \int\limits_{t_1}^{t_2}\sqrt{(x'(t))^2+(y'(t))^2}dt t 1 ∫ t 2 ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 d t , where ( x ( t ) , y ( t ) ) , t ∈ [ t 1 , t 2 ] (x(t),y(t)), t\in[t_1,t_2] ( x ( t ) , y ( t )) , t ∈ [ t 1 , t 2 ] is parametrization of the curve.
1)We have x ( t ) = t x(t)=t x ( t ) = t and y ( t ) = t 5 + 8 16 t 2 y(t)=\frac{t^5+8}{16t^2} y ( t ) = 16 t 2 t 5 + 8 , t ∈ [ 2 , 3 ] t\in[2,3] t ∈ [ 2 , 3 ]
So x ′ ( t ) = 1 x'(t)=1 x ′ ( t ) = 1 and y ′ ( t ) = 5 t 4 ⋅ 16 t 2 − ( t 5 + 8 ) ⋅ 32 t 256 t 4 = 3 t 5 − 16 16 t 3 y'(t)=\frac{5t^4\cdot 16t^2-(t^5+8)\cdot 32t}{256t^4}=\frac{3t^5-16}{16t^3} y ′ ( t ) = 256 t 4 5 t 4 ⋅ 16 t 2 − ( t 5 + 8 ) ⋅ 32 t = 16 t 3 3 t 5 − 16
L = ∫ 2 3 1 + ( 3 t 5 − 16 16 t 3 ) 2 d t L=\int\limits_2^3\sqrt{1+\bigl(\frac{3t^5-16}{16t^3}\bigr)^2}dt L = 2 ∫ 3 1 + ( 16 t 3 3 t 5 − 16 ) 2 d t
2)We have x ( t ) = t 4 8 + 1 4 t 2 x(t)=\frac{t^4}{8}+\frac{1}{4t^2} x ( t ) = 8 t 4 + 4 t 2 1 and y ( t ) = t y(t)=t y ( t ) = t , t ∈ [ 1 , 4 ] t\in[1,4] t ∈ [ 1 , 4 ]
x ′ ( t ) = t 3 2 − 1 2 t 3 = t 6 − 1 2 t 3 x'(t)=\frac{t^3}{2}-\frac{1}{2t^3}=\frac{t^6-1}{2t^3} x ′ ( t ) = 2 t 3 − 2 t 3 1 = 2 t 3 t 6 − 1 , y ′ ( t ) = 1 y'(t)=1 y ′ ( t ) = 1
L = ∫ 1 4 1 + ( t 6 − 1 2 t 3 ) 2 d t = ∫ 1 4 t 6 + 1 2 t 3 d t L=\int\limits_1^4\sqrt{1+\bigl(\frac{t^6-1}{2t^3}\bigr)^2}dt=\int\limits_1^4\frac{t^6+1}{2t^3}dt L = 1 ∫ 4 1 + ( 2 t 3 t 6 − 1 ) 2 d t = 1 ∫ 4 2 t 3 t 6 + 1 d t
Answer: 1)∫ 2 3 1 + ( 3 t 5 − 16 16 t 3 ) 2 d t \int\limits_2^3\sqrt{1+\bigl(\frac{3t^5-16}{16t^3}\bigr)^2}dt 2 ∫ 3 1 + ( 16 t 3 3 t 5 − 16 ) 2 d t , 2)∫ 1 4 t 6 + 1 2 t 3 d t \int\limits_1^4\frac{t^6+1}{2t^3}dt 1 ∫ 4 2 t 3 t 6 + 1 d t
Comments