Question #100153
1. Let L be the length of the curve y= x^5 + 8/ 16x^2 from x=2 to x=3, an integral expression for L is ________.

2. Let L be the length of the curve x= y^4/8 + 1/ 4y^2 from y= 1 to y=4, an integral expression for L is______.
1
Expert's answer
2019-12-09T12:38:32-0500

Length of the curve is t1t2(x(t))2+(y(t))2dt\int\limits_{t_1}^{t_2}\sqrt{(x'(t))^2+(y'(t))^2}dt , where (x(t),y(t)),t[t1,t2](x(t),y(t)), t\in[t_1,t_2] is parametrization of the curve.

1)We have x(t)=tx(t)=t and y(t)=t5+816t2y(t)=\frac{t^5+8}{16t^2} , t[2,3]t\in[2,3]

So x(t)=1x'(t)=1 and y(t)=5t416t2(t5+8)32t256t4=3t51616t3y'(t)=\frac{5t^4\cdot 16t^2-(t^5+8)\cdot 32t}{256t^4}=\frac{3t^5-16}{16t^3}

L=231+(3t51616t3)2dtL=\int\limits_2^3\sqrt{1+\bigl(\frac{3t^5-16}{16t^3}\bigr)^2}dt

2)We have x(t)=t48+14t2x(t)=\frac{t^4}{8}+\frac{1}{4t^2} and y(t)=ty(t)=t , t[1,4]t\in[1,4]

x(t)=t3212t3=t612t3x'(t)=\frac{t^3}{2}-\frac{1}{2t^3}=\frac{t^6-1}{2t^3}, y(t)=1y'(t)=1

L=141+(t612t3)2dt=14t6+12t3dtL=\int\limits_1^4\sqrt{1+\bigl(\frac{t^6-1}{2t^3}\bigr)^2}dt=\int\limits_1^4\frac{t^6+1}{2t^3}dt

Answer: 1)231+(3t51616t3)2dt\int\limits_2^3\sqrt{1+\bigl(\frac{3t^5-16}{16t^3}\bigr)^2}dt , 2)14t6+12t3dt\int\limits_1^4\frac{t^6+1}{2t^3}dt


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS