Area =∫05(x2−3x)dx=\int_0^5 (x^2-3x)dx=∫05(x2−3x)dx
=∫03(3x−x2)dx+∫35(x2−3x)dx=\int_0^3(3x-x^2)dx+\int_3^5(x^2-3x)dx=∫03(3x−x2)dx+∫35(x2−3x)dx
=[3x2/2−x3/3]03+[x3/3−3x2/2]35=[3x^2/2-x^3/3]_0^3+[x^3/3-3x^2/2]_3^5=[3x2/2−x3/3]03+[x3/3−3x2/2]35
=(27/2−9)+(53/3−3∗52/2)−(9−27/2)=(27/2-9)+(5^3/3-3*5^2/2)-(9-27/2)=(27/2−9)+(53/3−3∗52/2)−(9−27/2)
=27−18+(125/3−75/2)=27-18+(125/3-75/2)=27−18+(125/3−75/2)
=(25/6)+9=(25/6)+9=(25/6)+9
=79/6=79/6=79/6
Answer: 796.\frac{79}{6}.679.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments