1.∫x3e4xdx=x3e4x/4−(3/4)∫x2e4xdx\int x^3e^{4x}dx=x^3e^{4x}/4-(3/4)\int x^2e^{4x}dx∫x3e4xdx=x3e4x/4−(3/4)∫x2e4xdx
=x3e4x/4−3/4(x2e4x/4−2/4∫xe4x)=x^3e^{4x}/4-3/4(x^2e^{4x}/4-2/4\int xe^{4x})=x3e4x/4−3/4(x2e4x/4−2/4∫xe4x)
=x3e4x/4−3/4(x2e4x/4−2/4(xe4x/4−e4x/16)+c=x^3e^{4x}/4-3/4(x^2e^{4x}/4-2/4(xe^{4x}/4-e^{4x}/16)+c=x3e4x/4−3/4(x2e4x/4−2/4(xe4x/4−e4x/16)+c
=x3e4x/4−3x2e4x/16+(3/32)xe4x−3e4x/128)+c=x^3e^{4x}/4-3x^2e^{4x}/16+(3/32)xe^{4x}-3e^{4x}/128)+c=x3e4x/4−3x2e4x/16+(3/32)xe4x−3e4x/128)+c
2.
∫2xe2xdx=2xe2x/2−∫e2xdx=xe2x−e2x/2+c\int2xe^{2x}dx=2xe^{2x}/2-\int e^{2x}dx=xe^{2x}-e^{2x}/2+c∫2xe2xdx=2xe2x/2−∫e2xdx=xe2x−e2x/2+c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments