1. ∫ 2 x a r c t a n ( x ) d x = 2 ∫ x a r c t a n ( x ) d x = ∣ u = a r c t a n ( x ) d v = x d x d u = 1 x 2 + 1 d x v = x 2 2 ∣ = 1. \int2x arctan(x)dx= 2 \int x arctan(x) dx = \begin{vmatrix} u = arctan(x) \\
dv = xdx\\
du = \frac 1{x^2+1}dx\\
v = \frac {x^2}2
\end{vmatrix} = 1. ∫ 2 x a rc t an ( x ) d x = 2 ∫ x a rc t an ( x ) d x = ∣ ∣ u = a rc t an ( x ) d v = x d x d u = x 2 + 1 1 d x v = 2 x 2 ∣ ∣ =
= x 2 a r c t a n ( x ) − ∫ x 2 x 2 + 1 d x = x 2 a r c t a n ( x ) − ∫ ( 1 − 1 x 2 + 1 ) d x = = x 2 a r c t a n ( x ) − ∫ 1 d x + ∫ 1 x 2 + 1 d x = =x^2arctan(x) - \int \frac {x^2}{x^2+1}dx =x^2arctan(x) - \int (1 - \frac {1}{x^2+1})dx =\\=x^2arctan(x) - \int1dx+\int\frac{1}{x^2+1} dx =\\ = x 2 a rc t an ( x ) − ∫ x 2 + 1 x 2 d x = x 2 a rc t an ( x ) − ∫ ( 1 − x 2 + 1 1 ) d x = = x 2 a rc t an ( x ) − ∫ 1 d x + ∫ x 2 + 1 1 d x =
= x 2 a r c t a n ( x ) + a r c t a n ( x ) − x + C = x^2arctan(x)+arctan(x)-x +C = x 2 a rc t an ( x ) + a rc t an ( x ) − x + C
2. ∫ x 2 ( x + 4 ) 5 d x = ∫ ( x 7 + 20 x 6 + 160 x 5 + 640 x 4 + 1280 x 3 + 1024 x 2 ) d x = 2. \int x^2(x+4)^5dx = \int (x^7+20x^6+160x^5+640x^4+1280x^3+1024x^2)dx= 2. ∫ x 2 ( x + 4 ) 5 d x = ∫ ( x 7 + 20 x 6 + 160 x 5 + 640 x 4 + 1280 x 3 + 1024 x 2 ) d x =
= ∫ x 7 d x 20 ∫ x 6 d x + 160 ∫ x 5 d x + 640 ∫ x 4 d x + 1280 ∫ x 3 d x + 1024 ∫ x 2 d x = =\int x^7dx 20\int x^6 dx+160\int x^5dx +640 \int x^4 dx+1280 \int x^3dx+1024\int x^2dx=\\ = ∫ x 7 d x 20 ∫ x 6 d x + 160 ∫ x 5 d x + 640 ∫ x 4 d x + 1280 ∫ x 3 d x + 1024 ∫ x 2 d x = = x 8 8 + 20 x 7 7 + 80 x 6 3 + 128 x 5 + 320 x 4 + 1024 x 3 3 + C \\= \frac {x^8}8 +\frac {20x^7}7 + \frac {80x^6}3 + 128x^5 + 320x^4 + \frac{1024x^3}3 +C = 8 x 8 + 7 20 x 7 + 3 80 x 6 + 128 x 5 + 320 x 4 + 3 1024 x 3 + C
Comments