1.∫2xarctan(x)dx=2∫xarctan(x)dx=∣∣u=arctan(x)dv=xdxdu=x2+11dxv=2x2∣∣=
=x2arctan(x)−∫x2+1x2dx=x2arctan(x)−∫(1−x2+11)dx==x2arctan(x)−∫1dx+∫x2+11dx=
=x2arctan(x)+arctan(x)−x+C
2.∫x2(x+4)5dx=∫(x7+20x6+160x5+640x4+1280x3+1024x2)dx=
=∫x7dx20∫x6dx+160∫x5dx+640∫x4dx+1280∫x3dx+1024∫x2dx==8x8+720x7+380x6+128x5+320x4+31024x3+C
Comments