There is a formula for evaluating this kind of integral:
"\\int_{0}^{\\frac{\\pi}{2}} (Sin^mxCos^nx)dx =\\frac{[(m-1)(m-3)...1][(n-1)(n-3)..1]}{[(m+n)(m+n-2)...2]}*\\frac{\\pi}{2}"
When both m and n are even.
Here, we have "m=6,n=8"
Put the value of m and n in the above formula, we will get the value of required integral as:
"\\frac{[5.3.1][7.5.3.1]}{[14.12.10.8.6.4.2]}*\\frac{\\pi}{2}"
"=\\frac{15*105}{645120}*\\frac{\\pi}{2}"
"=\\frac{1575}{645120}*\\frac{\\pi}{2}"
"=0.00122\\pi"
Comments
Leave a comment