Question #99962
Evaluate the definite integral

Integral of sin^6xcos^8xdx

upper is pi/2
lower is 0
1
Expert's answer
2019-12-05T12:07:51-0500

There is a formula for evaluating this kind of integral:


0π2(SinmxCosnx)dx=[(m1)(m3)...1][(n1)(n3)..1][(m+n)(m+n2)...2]π2\int_{0}^{\frac{\pi}{2}} (Sin^mxCos^nx)dx =\frac{[(m-1)(m-3)...1][(n-1)(n-3)..1]}{[(m+n)(m+n-2)...2]}*\frac{\pi}{2}


When both m and n are even.

Here, we have m=6,n=8m=6,n=8

Put the value of m and n in the above formula, we will get the value of required integral as:


[5.3.1][7.5.3.1][14.12.10.8.6.4.2]π2\frac{[5.3.1][7.5.3.1]}{[14.12.10.8.6.4.2]}*\frac{\pi}{2}


=15105645120π2=\frac{15*105}{645120}*\frac{\pi}{2}


=1575645120π2=\frac{1575}{645120}*\frac{\pi}{2}


=0.00122π=0.00122\pi


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS