1)
"\\frac{dy}{dx}=2x-\\frac{A}{x^2}.\\\\\n\\frac{dy}{dx}|_{x=5}=8\\to 10-\\frac{A}{25}=8\\to A=50."
2)
"\\frac{dy}{dx}=6x^2-6x-12.\\\\\n\\frac{dy}{dx}=0\\to 6x^2-6x-12=0\\to x=-1,\\;\\;x=2.\\\\\n\\frac{d^2y}{dx^2}=12x-6.\\\\\n\\frac{d^2y}{dx^2}|_{x=-1}=-18<0.\\\\\n\\frac{d^2y}{dx^2}|_{x=2}=18>0."
So, the maximum point is "(-1, y(-1))=(-1, 8)."
the minimum point is "(2, y(2))=(2,-19)."
Comments
Leave a comment