Question #99386
1-the curve y=x^2+A÷x has the gradient of 8 when x =5.calculate the value of A.
2-find the maximum point and the minimum points of :y=2x^3-3x^2-12x+1.
1
Expert's answer
2019-11-26T11:23:44-0500

1)

dydx=2xAx2.dydxx=5=810A25=8A=50.\frac{dy}{dx}=2x-\frac{A}{x^2}.\\ \frac{dy}{dx}|_{x=5}=8\to 10-\frac{A}{25}=8\to A=50.


2)

dydx=6x26x12.dydx=06x26x12=0x=1,    x=2.d2ydx2=12x6.d2ydx2x=1=18<0.d2ydx2x=2=18>0.\frac{dy}{dx}=6x^2-6x-12.\\ \frac{dy}{dx}=0\to 6x^2-6x-12=0\to x=-1,\;\;x=2.\\ \frac{d^2y}{dx^2}=12x-6.\\ \frac{d^2y}{dx^2}|_{x=-1}=-18<0.\\ \frac{d^2y}{dx^2}|_{x=2}=18>0.

So, the maximum point is (1,y(1))=(1,8).(-1, y(-1))=(-1, 8).

the minimum point is (2,y(2))=(2,19).(2, y(2))=(2,-19).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS