1)
dydx=2x−Ax2.dydx∣x=5=8→10−A25=8→A=50.\frac{dy}{dx}=2x-\frac{A}{x^2}.\\ \frac{dy}{dx}|_{x=5}=8\to 10-\frac{A}{25}=8\to A=50.dxdy=2x−x2A.dxdy∣x=5=8→10−25A=8→A=50.
2)
dydx=6x2−6x−12.dydx=0→6x2−6x−12=0→x=−1, x=2.d2ydx2=12x−6.d2ydx2∣x=−1=−18<0.d2ydx2∣x=2=18>0.\frac{dy}{dx}=6x^2-6x-12.\\ \frac{dy}{dx}=0\to 6x^2-6x-12=0\to x=-1,\;\;x=2.\\ \frac{d^2y}{dx^2}=12x-6.\\ \frac{d^2y}{dx^2}|_{x=-1}=-18<0.\\ \frac{d^2y}{dx^2}|_{x=2}=18>0.dxdy=6x2−6x−12.dxdy=0→6x2−6x−12=0→x=−1,x=2.dx2d2y=12x−6.dx2d2y∣x=−1=−18<0.dx2d2y∣x=2=18>0.
So, the maximum point is (−1,y(−1))=(−1,8).(-1, y(-1))=(-1, 8).(−1,y(−1))=(−1,8).
the minimum point is (2,y(2))=(2,−19).(2, y(2))=(2,-19).(2,y(2))=(2,−19).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments