Answer to Question #99233 in Calculus for Leo
For the function v = 12 sin 40, calculate the: a) mean b) root mean square (RMS)
Over a range of 0 ≤ Ø ≤ π/4 radians.
(Note: the trigonometric identity cos 2Ø = 1-2sin^2 Ø)
1
2019-12-04T09:39:42-0500
a)
"v_{av}=12\\frac{4}{\\pi}\\int _0^{\\frac{\\pi}{4}}d\\theta \\sin{4\\theta}=3\\frac{4}{\\pi}\\int _0^{\\pi}dx \\sin{x}"
"v_{av}=-3(\\cos{\\pi}-\\cos{0})\\frac{4}{\\pi}=\\frac{24}{\\pi}" b)
"v_{rms}^2=12^2\\frac{4}{\\pi}\\int _0^{\\frac{\\pi}{4}}d\\theta \\sin^2{4\\theta}=12^2\\frac{2}{\\pi}\\int _0^{\\frac{\\pi}{4}}d\\theta (1-\\cos{8\\theta})"
"\\int _0^{\\frac{\\pi}{4}}d\\theta (1-\\cos{8\\theta})=\\frac{\\pi}{4}-\\frac{1}{8}\\int _0^{2\\pi}dy \\sin{y}=\\frac{\\pi}{4}" Thus,
"v_{rms}^2=12^2\\frac{4}{\\pi}\\int _0^{\\frac{\\pi}{4}}d\\theta \\sin^2{4\\theta}=12^2\\frac{2}{\\pi}\\frac{\\pi}{4}"
"v_{rms}=\\frac{12}{\\sqrt{2}}"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment