For the function v = 12 sin 40, calculate the: a) mean b) root mean square (RMS)
Over a range of 0 ≤ Ø ≤ π/4 radians.
(Note: the trigonometric identity cos 2Ø = 1-2sin^2 Ø)
1
2019-12-04T09:39:42-0500
a)
vav=12π4∫04πdθsin4θ=3π4∫0πdxsinx
vav=−3(cosπ−cos0)π4=π24 b)
vrms2=122π4∫04πdθsin24θ=122π2∫04πdθ(1−cos8θ)
∫04πdθ(1−cos8θ)=4π−81∫02πdysiny=4π Thus,
vrms2=122π4∫04πdθsin24θ=122π24π
vrms=212
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments