2019-11-22T08:43:27-05:00
For the function v = 12 sin 40, calculate the: a) mean b) root mean square (RMS)
Over a range of 0 ≤ Ø ≤ π/4 radians.
(Note: the trigonometric identity cos 2Ø = 1-2sin^2 Ø)
1
2019-12-04T09:39:42-0500
a)
v a v = 12 4 π ∫ 0 π 4 d θ sin 4 θ = 3 4 π ∫ 0 π d x sin x v_{av}=12\frac{4}{\pi}\int _0^{\frac{\pi}{4}}d\theta \sin{4\theta}=3\frac{4}{\pi}\int _0^{\pi}dx \sin{x} v a v = 12 π 4 ∫ 0 4 π d θ sin 4 θ = 3 π 4 ∫ 0 π d x sin x
v a v = − 3 ( cos π − cos 0 ) 4 π = 24 π v_{av}=-3(\cos{\pi}-\cos{0})\frac{4}{\pi}=\frac{24}{\pi} v a v = − 3 ( cos π − cos 0 ) π 4 = π 24 b)
v r m s 2 = 1 2 2 4 π ∫ 0 π 4 d θ sin 2 4 θ = 1 2 2 2 π ∫ 0 π 4 d θ ( 1 − cos 8 θ ) v_{rms}^2=12^2\frac{4}{\pi}\int _0^{\frac{\pi}{4}}d\theta \sin^2{4\theta}=12^2\frac{2}{\pi}\int _0^{\frac{\pi}{4}}d\theta (1-\cos{8\theta}) v r m s 2 = 1 2 2 π 4 ∫ 0 4 π d θ sin 2 4 θ = 1 2 2 π 2 ∫ 0 4 π d θ ( 1 − cos 8 θ )
∫ 0 π 4 d θ ( 1 − cos 8 θ ) = π 4 − 1 8 ∫ 0 2 π d y sin y = π 4 \int _0^{\frac{\pi}{4}}d\theta (1-\cos{8\theta})=\frac{\pi}{4}-\frac{1}{8}\int _0^{2\pi}dy \sin{y}=\frac{\pi}{4} ∫ 0 4 π d θ ( 1 − cos 8 θ ) = 4 π − 8 1 ∫ 0 2 π d y sin y = 4 π Thus,
v r m s 2 = 1 2 2 4 π ∫ 0 π 4 d θ sin 2 4 θ = 1 2 2 2 π π 4 v_{rms}^2=12^2\frac{4}{\pi}\int _0^{\frac{\pi}{4}}d\theta \sin^2{4\theta}=12^2\frac{2}{\pi}\frac{\pi}{4} v r m s 2 = 1 2 2 π 4 ∫ 0 4 π d θ sin 2 4 θ = 1 2 2 π 2 4 π
v r m s = 12 2 v_{rms}=\frac{12}{\sqrt{2}} v r m s = 2 12
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments