Question #99233
For the function v = 12 sin 40, calculate the: a) mean b) root mean square (RMS)
Over a range of 0 ≤ Ø ≤ π/4 radians.

(Note: the trigonometric identity cos 2Ø = 1-2sin^2 Ø)
1
Expert's answer
2019-12-04T09:39:42-0500

a)


vav=124π0π4dθsin4θ=34π0πdxsinxv_{av}=12\frac{4}{\pi}\int _0^{\frac{\pi}{4}}d\theta \sin{4\theta}=3\frac{4}{\pi}\int _0^{\pi}dx \sin{x}

vav=3(cosπcos0)4π=24πv_{av}=-3(\cos{\pi}-\cos{0})\frac{4}{\pi}=\frac{24}{\pi}

b)


vrms2=1224π0π4dθsin24θ=1222π0π4dθ(1cos8θ)v_{rms}^2=12^2\frac{4}{\pi}\int _0^{\frac{\pi}{4}}d\theta \sin^2{4\theta}=12^2\frac{2}{\pi}\int _0^{\frac{\pi}{4}}d\theta (1-\cos{8\theta})

0π4dθ(1cos8θ)=π41802πdysiny=π4\int _0^{\frac{\pi}{4}}d\theta (1-\cos{8\theta})=\frac{\pi}{4}-\frac{1}{8}\int _0^{2\pi}dy \sin{y}=\frac{\pi}{4}

Thus,


vrms2=1224π0π4dθsin24θ=1222ππ4v_{rms}^2=12^2\frac{4}{\pi}\int _0^{\frac{\pi}{4}}d\theta \sin^2{4\theta}=12^2\frac{2}{\pi}\frac{\pi}{4}

vrms=122v_{rms}=\frac{12}{\sqrt{2}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS