A.i) "y=10^{-3}e^{F}"
"dy=10^{-3}e^FdF"
"W=\\int_{100}^{500}F.dy"
"W=\\int_{100}^{500}F.10^{-3}e^FdF"
"W=10^{-3}\\int_{100}^{500}F.e^FdF"
"W= 10^{-3} [(F-1).e^F]_{100}^{500}"
"W=10^{-3}[499e^{500}-99e^{100}]"
"W=7\u00d710^{216}J"
ii)Solving by Trapezoidal Rule
Let "n=4"
"h=(500-100)\/4"
"x_o=100"
"x_1=200 ....x_4=500"
"y_o=10^{-3}100.e^{100}=e^{100}\/10"
"y_1=10^{-3}200.e^{200}=e^{200}\/20"
"y_2=10^{-3}300.e^{300}=e^{300}\/30"
"y_3=10^{-3}400.e^{400}=e^{400}\/40"
"y_4=10^{-3}500.e^{500}=e^{500}\/50"
According to Trapezoidal rule
"W=(h\/2)[y_o+y_4+2(y_1+y_2+y_3)]"
"W=2[e^{100}\/10+e^{500}\/50+2(e^{200}\/20+e^{300}\/30+e^{400}\/40)]"
"W=2[2.69\u00d710^{42}+2.8\u00d710^{215}+2(3.61\u00d710^{85}+6.47\u00d710^{128}+1.3\u00d710^{172})]"
"W=5.6\u00d710^{215}J"
B)Answer obtained in part(ii) is lesser than that obtained in part(i).
C)If we increase the values of n to n=5,n=6,n=7...The obtained Answer is closer to the actual value.
D)As n becomes larger and larger,the more accurate the answer is.
Comments
Leave a comment