Speed of the Plane
Given,
The model for the path of the plane during this maneuver is
"r(t) = 10 cos 10\\pi \\space \\vec i + 10 sin 10\\pi t \\space \\vec j + (4 + 4t ) \\vec k , \\space 0\\le t\\le\\frac {1}{20}"
Here t is the time in hours and
r is the position vector
(a)
We can calculate the speed of the plane by the formula
"||r' (t)||"
So, Differentiate the position vector r(t) with respect to t
"= - 100\\pi sin 10\\pi \\space t \\space \\vec i \\space + \\space 100 \\pi cos 10\\pi t \\space \\vec j + 4 \\vec k"
Now the Speed of the plane =
"= \\sqrt {(- 100 \\pi sin10\\pi t)^2 + (100\\pi cos 10\\pi t)^2 + 4^2 }""= \\sqrt {( 10000 \\pi^2 sin^2 10\\pi t) + (10000\\pi^2 cos^2 10\\pi t) + 16 }"
"= \\sqrt {10000 \\pi^2 \\space [( sin^2 (10\\pi t ) + cos^2 (10\\pi t)] + 16}"
"||v(t) || = \\sqrt {10000\\pi^2 (1) + 16} = \\sqrt {10000\\pi^2 + 16}"
"Now \\space the \\space Speed \\space of \\space the \\space plane = = 4 \\times \\sqrt {625\\pi^2 + 1} = 314.025 \\space miles\/hr"
(b).
Now, we need to calculate the "\u03b1_{T} \\space and \\space \u03b1_{N}"
Here, formula for Tangential acceleration is given by
"\u03b1_{T} = \\frac {d}{dt} [||v||] = \\frac {v.\u03b1}{||v||}"
We know,
"\u03b1(t) = v'(t) = \\frac {d}{dt} (- 100 \\pi sin 10\\pi \\space t \\space \\vec i \\space + \\space 100 \\pi cos 10\\pi t \\space \\vec j + 4 \\vec k )"
"= -1000 \\pi^2 \\space cos 10\\pi t \\vec i - 1000 \\pi^2 sin 10\\pi t \\space \\vec j"
"= 100000\\pi^3 sin (10\\pi t) \\space cos (10\\pi t) - 100000 \\pi^3 sin (10\\pi t) cos (10\\pi t) + 0"
"v.\u03b1 = 0"
So, Tangential acceleration is
"\u03b1_{T} = \\frac {v.\u03b1}{||v||} = \\frac {0} { 314.025} = 0"
Here, formula for Normal components of acceleration is given by
"\u03b1_{N} = \\frac {||v \\times \u03b1||}{||v||}"
.
"|| v \\times \u03b1 ||= \\sqrt {(4000 \\pi^2)^2 \\space [sin ^2(10\\pi t) + cos^2 (10\\pi t)] + 10000^2 \\pi^6}"
"|| v \\times \u03b1 ||= \\sqrt {(4000 \\pi^2)^2 \\space + 10000^2 \\pi^6}"
"\u03b1_{N} = \\frac {||v \\times \u03b1||}{||v||} = \\frac {4000\\pi^2 \\sqrt {1+ 625\\pi^2}}{4 \\times \\sqrt {625\\pi^2 + 1}}"
Normal components of acceleration is
"\u03b1_{N} = 1000 \\pi^2"
Comments
Leave a comment