Question #98912
Differentiate cube root of x plus cube root of x
1
Expert's answer
2019-11-18T12:22:21-0500

Differentiation


We need to differentiate the Function x+x33\sqrt[3]{x + \sqrt[3]{x}}


Solution:


We know,

Derivative of xn=n×xn1Derivative \space of \space x^n = n \times x^{n-1}

Chain rule,

Derivativeoff(g(x))=f(g(x))×g(x)×Derivative of (x)Derivative of f(g(x)) = f ' (g(x)) \times g'(x) \times Derivative \space of \space (x)


Let the given function as

y=x+x33=(x+x13)13y = \sqrt[3]{x + \sqrt[3]{x}} = ( x + {x}^ {\frac {1}{3}})^{\frac {1}{3}}

Now, Differentiate with respect to x,

dydx=ddx((x+x13)13)\frac {dy}{dx} = \frac {d}{dx} ( ( x + {x}^ {\frac {1}{3}})^{\frac {1}{3}})


=13×(x+x13)(131)×ddx(x+x13)= \frac {1}{3} \times ( x+ x^{\frac {1}{3}})^{(\frac {1}{3} - 1)} \times \frac {d}{dx} (x + x^{\frac{1}{3}})

=13×(x+x13)(23)×(1+13×x23)= \frac {1}{3} \times ( x+ x^{\frac {1}{3}})^{(\frac {-2}{3} )} \times ( 1 + \frac {1}{3} \times x ^{\frac {-2}{3}})




=19×(x+x13)(23)×(3+x23)= \frac {1}{9} \times ( x+ x^{\frac {1}{3}})^{(\frac {-2}{3} )} \times ( 3 + x ^{\frac {-2}{3}})

Answer:

dydx==19×(x+x13)(23)×(3+x23)\frac {dy}{dx} = = \frac {1}{9} \times ( x+ x^{\frac {1}{3}})^{(\frac {-2}{3} )} \times ( 3 + x ^{\frac {-2}{3}})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS