Differentiation
We need to differentiate the Function "\\sqrt[3]{x + \\sqrt[3]{x}}"
Solution:
We know,
"Derivative \\space of \\space x^n = n \\times x^{n-1}"Chain rule,
"Derivative of f(g(x)) = f ' (g(x)) \\times g'(x) \\times Derivative \\space of \\space (x)"
Let the given function as
"y = \\sqrt[3]{x + \\sqrt[3]{x}} = ( x + {x}^ {\\frac {1}{3}})^{\\frac {1}{3}}"
Now, Differentiate with respect to x,
"\\frac {dy}{dx} = \\frac {d}{dx} ( ( x + {x}^ {\\frac {1}{3}})^{\\frac {1}{3}})"
"= \\frac {1}{3} \\times ( x+ x^{\\frac {1}{3}})^{(\\frac {-2}{3} )} \\times ( 1 + \\frac {1}{3} \\times x ^{\\frac {-2}{3}})"
Answer:
"\\frac {dy}{dx} = = \\frac {1}{9} \\times ( x+ x^{\\frac {1}{3}})^{(\\frac {-2}{3} )} \\times ( 3 + x ^{\\frac {-2}{3}})"
Comments
Leave a comment