Differentiation
We need to differentiate the Function x + x 3 3 \sqrt[3]{x + \sqrt[3]{x}} 3 x + 3 x
Solution:
We know,
D e r i v a t i v e o f x n = n × x n − 1 Derivative \space of \space x^n = n \times x^{n-1} Der i v a t i v e o f x n = n × x n − 1 Chain rule,
D e r i v a t i v e o f f ( g ( x ) ) = f ′ ( g ( x ) ) × g ′ ( x ) × D e r i v a t i v e o f ( x ) Derivative of f(g(x)) = f ' (g(x)) \times g'(x) \times Derivative \space of \space (x) Der i v a t i v eo ff ( g ( x )) = f ′ ( g ( x )) × g ′ ( x ) × Der i v a t i v e o f ( x )
Let the given function as
y = x + x 3 3 = ( x + x 1 3 ) 1 3 y = \sqrt[3]{x + \sqrt[3]{x}} = ( x + {x}^ {\frac {1}{3}})^{\frac {1}{3}} y = 3 x + 3 x = ( x + x 3 1 ) 3 1
Now, Differentiate with respect to x,
d y d x = d d x ( ( x + x 1 3 ) 1 3 ) \frac {dy}{dx} = \frac {d}{dx} ( ( x + {x}^ {\frac {1}{3}})^{\frac {1}{3}}) d x d y = d x d (( x + x 3 1 ) 3 1 )
= 1 3 × ( x + x 1 3 ) ( 1 3 − 1 ) × d d x ( x + x 1 3 ) = \frac {1}{3} \times ( x+ x^{\frac {1}{3}})^{(\frac {1}{3} - 1)} \times \frac {d}{dx} (x + x^{\frac{1}{3}}) = 3 1 × ( x + x 3 1 ) ( 3 1 − 1 ) × d x d ( x + x 3 1 )
= 1 3 × ( x + x 1 3 ) ( − 2 3 ) × ( 1 + 1 3 × x − 2 3 ) = \frac {1}{3} \times ( x+ x^{\frac {1}{3}})^{(\frac {-2}{3} )} \times ( 1 + \frac {1}{3} \times x ^{\frac {-2}{3}}) = 3 1 × ( x + x 3 1 ) ( 3 − 2 ) × ( 1 + 3 1 × x 3 − 2 )
= 1 9 × ( x + x 1 3 ) ( − 2 3 ) × ( 3 + x − 2 3 ) = \frac {1}{9} \times ( x+ x^{\frac {1}{3}})^{(\frac {-2}{3} )} \times ( 3 + x ^{\frac {-2}{3}}) = 9 1 × ( x + x 3 1 ) ( 3 − 2 ) × ( 3 + x 3 − 2 )
Answer:
d y d x = = 1 9 × ( x + x 1 3 ) ( − 2 3 ) × ( 3 + x − 2 3 ) \frac {dy}{dx} = = \frac {1}{9} \times ( x+ x^{\frac {1}{3}})^{(\frac {-2}{3} )} \times ( 3 + x ^{\frac {-2}{3}}) d x d y == 9 1 × ( x + x 3 1 ) ( 3 − 2 ) × ( 3 + x 3 − 2 )
Comments