a.Parametrize the straight line C byx=x1+t(x2−x1) ,
y=y1+t(y2−y1),
where t goes from t=0 to t=1 . Therefore
∮ydx+xdy=∫01−(y1+t(y2−y1))(x2−x1)dt+∫01(x1+t(x2−x1))(y2−y1)dt
=−y1(x2−x1)−(y2−y1)(x2−x1)/2+x1(y2−y1)+(x2−x1)(y2−y1)
=−y1(x2−x1)+x1(y2−y1)=x1y2−x2y1 (Proved)
b.Consider two consecutive vertices(xi,yi) and(xi+1,yi+1) . Let Ci be the line segment joining (xi,yi) to (xi+1,yi+1) ,i=1,...,n, with the convention that(xn+1,yn+1)=(x1,y1) . Let us compute
∮(xdy−ydx)
To do so, we can parametrize Ci as
xi=(1−t)xi+txi+1
yi=(1−t)yi+tyi+1,
dx=(xi+1−xi)dt
dy=(yi+1−yi)dt
∮(xdy−ydx)=∫01((1−t)xi+txi+1).(yi+1−yi)dt−∫01((1−t)yi+tyi+1).(xi+1−xi)dt
=∫01xiyi+1−xi+2yi
=xiyi+1−xi+1 -----(1)
Denoting by D the region enclosed by the polygon
We know A=1/2∫dD(xdy−ydx)
=1/2Σi=1n(∫Ci(xdy−ydx))
Using (1): we get the desired result
A=1/2[(x1y2−x2y1)+(x2y3−x3y2)+...(xn−1yn−xnyn−1)+(xny1+x1yn)]
(Proved)
(c)Area=1/2[(0−0)+(2.3−1.1)+(1.2−0)+(0−(−2))+(0−0)]
=1/2(5+2+2)=9/2 (Answer) using formula proved in (b)
Comments