Question #98856
In this question, we are going to derive the Surveyor’s Formula for finding the area of a polygon in terms of its coordinates.(a) If C is the line segment from (x1, y1) to (x2, y2) and ω=−ydx+xdy is a differential 1-form, show that ∫Cω=x1y2−x2y1 (b) If the vertices of a polygon (in counterclockwise order) are (x1, y1),(x2, y2), . . .(xn, yn),show that the area of the polygon is A=12[(x1y2−x2y1) + (x2y3−x3y2) +. . .(xn−1yn−xnyn−1) + (xny1+x1yn)] (c) Find the area of a pentagon with vertices (0,0),(2,1),(1,3),(0,2),(−1,1).
1
Expert's answer
2019-11-18T11:39:42-0500

a.Parametrize the straight line C byx=x1+t(x2x1)x = x_1 + t(x_2 − x_1) ,

y=y1+t(y2y1),y = y_1 + t(y_2 − y_1),

where t goes from t=0t = 0 to t=1t = 1 . Therefore

ydx+xdy=01(y1+t(y2y1))(x2x1)dt+01(x1+t(x2x1))(y2y1)dt\oint ydx+xdy=\int_{0} ^{1} −(y_1 + t(y_2 − y_1))(x_2 − x_1)dt +\int_{0} ^{1} (x_1 + t(x_2 − x_1))(y_2 − y_1)dt

=y1(x2x1)(y2y1)(x2x1)/2+x1(y2y1)+(x2x1)(y2y1)= −y_1(x_2 − x_1) −(y_2 − y_1)(x_2 − x_1)/2+ x1(y_2 − y_1) + (x_2 − x_1)(y_2 − y_1)

=y1(x2x1)+x1(y2y1)=x1y2x2y1= −y_1(x_2 − x_1) + x_1(y_2 − y_1) = x_1y_2 − x_2y_1 (Proved)

b.Consider two consecutive vertices(xi,yi)(x_i, y_i) and(xi+1,yi+1)(x_{i+1}, y_{i+1}) . Let Ci be the line segment joining (xi,yi)(x_i,y_i) to (xi+1,yi+1)(x_{i+1}, y_{i+1}) ,i=1,...,n,, i = 1, . . . , n, with the convention that(xn+1,yn+1)=(x1,y1)(x_{n+1}, y_{n+1}) = (x_1, y_1) . Let us compute

(xdyydx)\oint (xdy-ydx)

To do so, we can parametrize CiC_i as

xi=(1t)xi+txi+1x_i=(1-t)x_i + tx_{i+1}

yi=(1t)yi+tyi+1,y_i= (1 − t)y_i + ty_{i+1},

dx=(xi+1xi)dtdx = (x_{i+1} − x_i) dt

dy=(yi+1yi)dtdy = (y_{i+1 }− y_i) dt

(xdyydx)=01((1t)xi+txi+1).(yi+1yi)dt01((1t)yi+tyi+1).(xi+1xi)dt\oint (xdy-ydx)= \int_{0} ^{1} ((1-t)x_i + tx_{i+1}).(y_{i+1 }− y_i) dt- \int_{0} ^{1} ((1 − t)y_i + ty_{i+1}). (x_{i+1} − x_i) dt

=01xiyi+1xi+2yi=\int_{0} ^{1}x_iy_{i+1}-x_i+2y_i

=xiyi+1xi+1=x_iy_{i+1}-x_{i+1} -----(1)

Denoting by D the region enclosed by the polygon

We know A=1/2dD(xdyydx)A=1/2\smallint _{dD} ( xdy-ydx)

=1/2Σi=1n(Ci(xdyydx))=1/2\Sigma _{i=1}^n (\smallint _{C_i}(xdy-ydx))

Using (1): we get the desired result

A=1/2[(x1y2x2y1)+(x2y3x3y2)+...(xn1ynxnyn1)+(xny1+x1yn)]A=1/2[(x_1y_2−x_2y_1) + (x_2y_3−x_3y_2) +. . .(x_{n−1}y_n−x_ny_{n−1}) + (x_ny_1+x_1y_n)]

(Proved)

(c)Area=1/2[(00)+(2.31.1)+(1.20)+(0(2))+(00)]Area=1/2[(0-0)+(2.3-1.1)+(1.2-0)+(0-(-2))+(0-0)]

=1/2(5+2+2)=9/2=1/2(5+2+2)=9/2 (Answer) using formula proved in (b)










Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS