Question #98856
In this question, we are going to derive the Surveyorโ€™s Formula for finding the area of a polygon in terms of its coordinates.(a) If C is the line segment from (x1, y1) to (x2, y2) and ฯ‰=โˆ’ydx+xdy is a differential 1-form, show that โˆซCฯ‰=x1y2โˆ’x2y1 (b) If the vertices of a polygon (in counterclockwise order) are (x1, y1),(x2, y2), . . .(xn, yn),show that the area of the polygon is A=12[(x1y2โˆ’x2y1) + (x2y3โˆ’x3y2) +. . .(xnโˆ’1ynโˆ’xnynโˆ’1) + (xny1+x1yn)] (c) Find the area of a pentagon with vertices (0,0),(2,1),(1,3),(0,2),(โˆ’1,1).
1
Expert's answer
2019-11-18T11:39:42-0500

a.Parametrize the straight line C byx=x1+t(x2โˆ’x1)x = x_1 + t(x_2 โˆ’ x_1) ,

y=y1+t(y2โˆ’y1),y = y_1 + t(y_2 โˆ’ y_1),

where t goes from t=0t = 0 to t=1t = 1 . Therefore

โˆฎydx+xdy=โˆซ01โˆ’(y1+t(y2โˆ’y1))(x2โˆ’x1)dt+โˆซ01(x1+t(x2โˆ’x1))(y2โˆ’y1)dt\oint ydx+xdy=\int_{0} ^{1} โˆ’(y_1 + t(y_2 โˆ’ y_1))(x_2 โˆ’ x_1)dt +\int_{0} ^{1} (x_1 + t(x_2 โˆ’ x_1))(y_2 โˆ’ y_1)dt

=โˆ’y1(x2โˆ’x1)โˆ’(y2โˆ’y1)(x2โˆ’x1)/2+x1(y2โˆ’y1)+(x2โˆ’x1)(y2โˆ’y1)= โˆ’y_1(x_2 โˆ’ x_1) โˆ’(y_2 โˆ’ y_1)(x_2 โˆ’ x_1)/2+ x1(y_2 โˆ’ y_1) + (x_2 โˆ’ x_1)(y_2 โˆ’ y_1)

=โˆ’y1(x2โˆ’x1)+x1(y2โˆ’y1)=x1y2โˆ’x2y1= โˆ’y_1(x_2 โˆ’ x_1) + x_1(y_2 โˆ’ y_1) = x_1y_2 โˆ’ x_2y_1 (Proved)

b.Consider two consecutive vertices(xi,yi)(x_i, y_i) and(xi+1,yi+1)(x_{i+1}, y_{i+1}) . Let Ci be the line segment joining (xi,yi)(x_i,y_i) to (xi+1,yi+1)(x_{i+1}, y_{i+1}) ,i=1,...,n,, i = 1, . . . , n, with the convention that(xn+1,yn+1)=(x1,y1)(x_{n+1}, y_{n+1}) = (x_1, y_1) . Let us compute

โˆฎ(xdyโˆ’ydx)\oint (xdy-ydx)

To do so, we can parametrize CiC_i as

xi=(1โˆ’t)xi+txi+1x_i=(1-t)x_i + tx_{i+1}

yi=(1โˆ’t)yi+tyi+1,y_i= (1 โˆ’ t)y_i + ty_{i+1},

dx=(xi+1โˆ’xi)dtdx = (x_{i+1} โˆ’ x_i) dt

dy=(yi+1โˆ’yi)dtdy = (y_{i+1 }โˆ’ y_i) dt

โˆฎ(xdyโˆ’ydx)=โˆซ01((1โˆ’t)xi+txi+1).(yi+1โˆ’yi)dtโˆ’โˆซ01((1โˆ’t)yi+tyi+1).(xi+1โˆ’xi)dt\oint (xdy-ydx)= \int_{0} ^{1} ((1-t)x_i + tx_{i+1}).(y_{i+1 }โˆ’ y_i) dt- \int_{0} ^{1} ((1 โˆ’ t)y_i + ty_{i+1}). (x_{i+1} โˆ’ x_i) dt

=โˆซ01xiyi+1โˆ’xi+2yi=\int_{0} ^{1}x_iy_{i+1}-x_i+2y_i

=xiyi+1โˆ’xi+1=x_iy_{i+1}-x_{i+1} -----(1)

Denoting by D the region enclosed by the polygon

We know A=1/2โˆซdD(xdyโˆ’ydx)A=1/2\smallint _{dD} ( xdy-ydx)

=1/2ฮฃi=1n(โˆซCi(xdyโˆ’ydx))=1/2\Sigma _{i=1}^n (\smallint _{C_i}(xdy-ydx))

Using (1): we get the desired result

A=1/2[(x1y2โˆ’x2y1)+(x2y3โˆ’x3y2)+...(xnโˆ’1ynโˆ’xnynโˆ’1)+(xny1+x1yn)]A=1/2[(x_1y_2โˆ’x_2y_1) + (x_2y_3โˆ’x_3y_2) +. . .(x_{nโˆ’1}y_nโˆ’x_ny_{nโˆ’1}) + (x_ny_1+x_1y_n)]

(Proved)

(c)Area=1/2[(0โˆ’0)+(2.3โˆ’1.1)+(1.2โˆ’0)+(0โˆ’(โˆ’2))+(0โˆ’0)]Area=1/2[(0-0)+(2.3-1.1)+(1.2-0)+(0-(-2))+(0-0)]

=1/2(5+2+2)=9/2=1/2(5+2+2)=9/2 (Answer) using formula proved in (b)










Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS