a.Parametrize the straight line C byx=x1โ+t(x2โโx1โ) ,
y=y1โ+t(y2โโy1โ),
where t goes from t=0 to t=1 . Therefore
โฎydx+xdy=โซ01โโ(y1โ+t(y2โโy1โ))(x2โโx1โ)dt+โซ01โ(x1โ+t(x2โโx1โ))(y2โโy1โ)dt
=โy1โ(x2โโx1โ)โ(y2โโy1โ)(x2โโx1โ)/2+x1(y2โโy1โ)+(x2โโx1โ)(y2โโy1โ)
=โy1โ(x2โโx1โ)+x1โ(y2โโy1โ)=x1โy2โโx2โy1โ (Proved)
b.Consider two consecutive vertices(xiโ,yiโ) and(xi+1โ,yi+1โ) . Let Ci be the line segment joining (xiโ,yiโ) to (xi+1โ,yi+1โ) ,i=1,...,n, with the convention that(xn+1โ,yn+1โ)=(x1โ,y1โ) . Let us compute
โฎ(xdyโydx)
To do so, we can parametrize Ciโ as
xiโ=(1โt)xiโ+txi+1โ
yiโ=(1โt)yiโ+tyi+1โ,
dx=(xi+1โโxiโ)dt
dy=(yi+1โโyiโ)dt
โฎ(xdyโydx)=โซ01โ((1โt)xiโ+txi+1โ).(yi+1โโyiโ)dtโโซ01โ((1โt)yiโ+tyi+1โ).(xi+1โโxiโ)dt
=โซ01โxiโyi+1โโxiโ+2yiโ
=xiโyi+1โโxi+1โ -----(1)
Denoting by D the region enclosed by the polygon
We know A=1/2โซdDโ(xdyโydx)
=1/2ฮฃi=1nโ(โซCiโโ(xdyโydx))
Using (1): we get the desired result
A=1/2[(x1โy2โโx2โy1โ)+(x2โy3โโx3โy2โ)+...(xnโ1โynโโxnโynโ1โ)+(xnโy1โ+x1โynโ)]
(Proved)
(c)Area=1/2[(0โ0)+(2.3โ1.1)+(1.2โ0)+(0โ(โ2))+(0โ0)]
=1/2(5+2+2)=9/2 (Answer) using formula proved in (b)
Comments