a.Parametrize the straight line C by"x = x_1 + t(x_2 \u2212 x_1)" ,
"y = y_1 + t(y_2 \u2212 y_1),"
where t goes from "t = 0" to "t = 1" . Therefore
"\\oint ydx+xdy=\\int_{0} ^{1} \u2212(y_1 + t(y_2 \u2212 y_1))(x_2 \u2212 x_1)dt +\\int_{0} ^{1} (x_1 + t(x_2 \u2212 x_1))(y_2 \u2212 y_1)dt"
"= \u2212y_1(x_2 \u2212 x_1) \u2212(y_2 \u2212 y_1)(x_2 \u2212 x_1)\/2+ x1(y_2 \u2212 y_1) + (x_2 \u2212 x_1)(y_2 \u2212 y_1)"
"= \u2212y_1(x_2 \u2212 x_1) + x_1(y_2 \u2212 y_1) = x_1y_2 \u2212 x_2y_1" (Proved)
b.Consider two consecutive vertices"(x_i, y_i)" and"(x_{i+1}, y_{i+1})" . Let Ci be the line segment joining "(x_i,y_i)" to "(x_{i+1}, y_{i+1})" ", i = 1, . . . , n," with the convention that"(x_{n+1}, y_{n+1}) = (x_1, y_1)" . Let us compute
"\\oint (xdy-ydx)"
To do so, we can parametrize "C_i" as
"x_i=(1-t)x_i + tx_{i+1}"
"y_i= (1 \u2212 t)y_i + ty_{i+1},"
"dx = (x_{i+1} \u2212 x_i) dt"
"dy = (y_{i+1 }\u2212 y_i) dt"
"\\oint (xdy-ydx)= \\int_{0} ^{1} ((1-t)x_i + tx_{i+1}).(y_{i+1 }\u2212 y_i) dt- \\int_{0} ^{1} ((1 \u2212 t)y_i + ty_{i+1}). (x_{i+1} \u2212 x_i) dt"
"=\\int_{0} ^{1}x_iy_{i+1}-x_i+2y_i"
"=x_iy_{i+1}-x_{i+1}" -----(1)
Denoting by D the region enclosed by the polygon
We know "A=1\/2\\smallint _{dD} ( xdy-ydx)"
"=1\/2\\Sigma _{i=1}^n (\\smallint _{C_i}(xdy-ydx))"
Using (1): we get the desired result
"A=1\/2[(x_1y_2\u2212x_2y_1) + (x_2y_3\u2212x_3y_2) +. . .(x_{n\u22121}y_n\u2212x_ny_{n\u22121}) + (x_ny_1+x_1y_n)]"
(Proved)
(c)"Area=1\/2[(0-0)+(2.3-1.1)+(1.2-0)+(0-(-2))+(0-0)]"
"=1\/2(5+2+2)=9\/2" (Answer) using formula proved in (b)
Comments
Leave a comment