Question #98480
Calculate the following line integral:
∫ C xy^3dx, where C is the unit circle x^2+y^2=1, oriented counterclockwise. Note: C is at the bottom right of the integral.
1
Expert's answer
2019-11-12T10:11:06-0500

Counterclockwise parametrization of CC is (cost,sint)(\cos t,\sin t) , t[0,2π]t\in[0,2\pi] , so

Cxy3dx=02πcostsin3td(cost)=\int\limits_C xy^3dx=\int\limits_0^{2\pi} \cos t\sin^3 td(\cos t)=

=02πcostsin4tdt=02πsin4td(sint)=15sin5t02π==-\int\limits_0^{2\pi} \cos t\sin^4 tdt=-\int\limits_0^{2\pi}\sin^4 td(\sin t)=-\frac{1}{5}\sin^5 t\bigl|_0^{2\pi}=

=15sin52π+15sin50=0=-\frac{1}{5}\sin^5 2\pi+\frac{1}{5}\sin^5 0=0

Answer:


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS