Evaluating Integrals
We apply a formula
"\\int x^n dx = \\frac {x^{n+1}} {n+1}"
"7 ). \\space \\space \\int (3 c^2 x^2 - d^4 )^2 \\space dx"
(Expand this )
"=\\int ( 9 c^4 x^4 - 6c^2 d^4 x^2 +d^8 ) dx"
"= 9c^4 \\frac {x^5}{5} - 6c^2 d^4 \\frac {x^3}{3} + d^8 x + k"
Answer :
"= 9c^4 \\frac {x^5}{5} - 2 c^2 d^4 {x^3} + d^8 \\space x + k"
"8). \\space \\space \\int (\\sqrt {2x} + 2x \\sqrt x \\space + \\frac {1} {\\sqrt x} ) \\space dx"
"=\\sqrt 2 \\int \\sqrt x \\space dx + 2 \\int x \\sqrt x \\space dx + \\int \\frac {1} {\\sqrt x} \\space dx + c"
"=\\sqrt 2 \\int x^{\\frac {1}{2}} \\space dx + 2 \\int x \\times x^\\frac {1}{2} \\space dx + \\int { x^{(-\\frac {1}{2})}} \\space dx + c"
"=\\sqrt 2 \\int x^{\\frac {1}{2}} \\space dx + 2 \\int x^\\frac {3}{2} \\space dx + \\int { x^{(-\\frac {1}{2})}} \\space dx + c"
Answer:
"= \\sqrt2 \\frac {x^{(\\frac {1}{2} +1)}}{(\\frac {1}{2} +1)} + 2 \\frac {x^{(\\frac {3}{2} +1)}}{(\\frac {3}{2} +1)} + \\frac {x^{(-\\frac {1}{2} +1)}}{(-\\frac {1}{2} +1)} + c"
9).
"\\int ( t^3 + 2 t^2 - 3 t^ {\\frac {1}{3}}) \\space dt" =
"\\int t^3 dt + 2 \\int t^2 dt - 3 \\int t^ {\\frac {1}{3}} \\space dt + c"
Answer:
"= \\frac {t^{4}}{4} + 2 \\frac {t^{{3}}}{3} - 9 \\frac {t^{(\\frac {4}{3} )}}{( {4})} + c"
Comments
Leave a comment