Evaluating Integrals
We apply a formula
∫ x n d x = x n + 1 n + 1 \int x^n dx = \frac {x^{n+1}} {n+1} ∫ x n d x = n + 1 x n + 1
7 ) . ∫ ( 3 c 2 x 2 − d 4 ) 2 d x 7 ). \space \space \int (3 c^2 x^2 - d^4 )^2 \space dx 7 ) . ∫ ( 3 c 2 x 2 − d 4 ) 2 d x
(Expand this )
= ∫ ( 9 c 4 x 4 − 6 c 2 d 4 x 2 + d 8 ) d x =\int ( 9 c^4 x^4 - 6c^2 d^4 x^2 +d^8 ) dx = ∫ ( 9 c 4 x 4 − 6 c 2 d 4 x 2 + d 8 ) d x
= 9 c 4 ∫ x 4 d x − 6 c 2 d 4 ∫ x 2 d x + d 8 ∫ d x + k =9 c^4 \int x^4 dx - 6c^2 d^4 \int x^2 \space dx +d^8 \int dx + k = 9 c 4 ∫ x 4 d x − 6 c 2 d 4 ∫ x 2 d x + d 8 ∫ d x + k
= 9 c 4 x 5 5 − 6 c 2 d 4 x 3 3 + d 8 x + k = 9c^4 \frac {x^5}{5} - 6c^2 d^4 \frac {x^3}{3} + d^8 x + k = 9 c 4 5 x 5 − 6 c 2 d 4 3 x 3 + d 8 x + k
Answer :
= 9 c 4 x 5 5 − 2 c 2 d 4 x 3 + d 8 x + k = 9c^4 \frac {x^5}{5} - 2 c^2 d^4 {x^3} + d^8 \space x + k = 9 c 4 5 x 5 − 2 c 2 d 4 x 3 + d 8 x + k
8 ) . ∫ ( 2 x + 2 x x + 1 x ) d x 8). \space \space \int (\sqrt {2x} + 2x \sqrt x \space + \frac {1} {\sqrt x} ) \space dx 8 ) . ∫ ( 2 x + 2 x x + x 1 ) d x
= 2 ∫ x d x + 2 ∫ x x d x + ∫ 1 x d x + c =\sqrt 2 \int \sqrt x \space dx + 2 \int x \sqrt x \space dx + \int \frac {1} {\sqrt x} \space dx + c = 2 ∫ x d x + 2 ∫ x x d x + ∫ x 1 d x + c
= 2 ∫ x 1 2 d x + 2 ∫ x × x 1 2 d x + ∫ x ( − 1 2 ) d x + c =\sqrt 2 \int x^{\frac {1}{2}} \space dx + 2 \int x \times x^\frac {1}{2} \space dx + \int { x^{(-\frac {1}{2})}} \space dx + c = 2 ∫ x 2 1 d x + 2 ∫ x × x 2 1 d x + ∫ x ( − 2 1 ) d x + c
= 2 ∫ x 1 2 d x + 2 ∫ x 3 2 d x + ∫ x ( − 1 2 ) d x + c =\sqrt 2 \int x^{\frac {1}{2}} \space dx + 2 \int x^\frac {3}{2} \space dx + \int { x^{(-\frac {1}{2})}} \space dx + c = 2 ∫ x 2 1 d x + 2 ∫ x 2 3 d x + ∫ x ( − 2 1 ) d x + c
Answer:
= 2 x ( 1 2 + 1 ) ( 1 2 + 1 ) + 2 x ( 3 2 + 1 ) ( 3 2 + 1 ) + x ( − 1 2 + 1 ) ( − 1 2 + 1 ) + c = \sqrt2 \frac {x^{(\frac {1}{2} +1)}}{(\frac {1}{2} +1)} + 2 \frac {x^{(\frac {3}{2} +1)}}{(\frac {3}{2} +1)} + \frac {x^{(-\frac {1}{2} +1)}}{(-\frac {1}{2} +1)} + c = 2 ( 2 1 + 1 ) x ( 2 1 + 1 ) + 2 ( 2 3 + 1 ) x ( 2 3 + 1 ) + ( − 2 1 + 1 ) x ( − 2 1 + 1 ) + c
9).
∫ ( t 3 + 2 t 2 − 3 t 1 3 ) d t \int ( t^3 + 2 t^2 - 3 t^ {\frac {1}{3}}) \space dt ∫ ( t 3 + 2 t 2 − 3 t 3 1 ) d t =
∫ t 3 d t + 2 ∫ t 2 d t − 3 ∫ t 1 3 d t + c \int t^3 dt + 2 \int t^2 dt - 3 \int t^ {\frac {1}{3}} \space dt + c ∫ t 3 d t + 2 ∫ t 2 d t − 3 ∫ t 3 1 d t + c
= t ( 3 + 1 ) ( 3 + 1 ) + 2 t ( 2 + 1 ) ( 2 + 1 ) − 3 t ( 1 3 + 1 ) ( 1 3 + 1 ) + c = \frac {t^{(3 +1)}}{(3 +1)} + 2 \frac {t^{({2} +1)}}{({2} +1)} - 3 \frac {t^{(\frac {1}{3} +1)}}{(\frac {1}{3} +1)} + c = ( 3 + 1 ) t ( 3 + 1 ) + 2 ( 2 + 1 ) t ( 2 + 1 ) − 3 ( 3 1 + 1 ) t ( 3 1 + 1 ) + c
Answer:
= t 4 4 + 2 t 3 3 − 9 t ( 4 3 ) ( 4 ) + c = \frac {t^{4}}{4} + 2 \frac {t^{{3}}}{3} - 9 \frac {t^{(\frac {4}{3} )}}{( {4})} + c = 4 t 4 + 2 3 t 3 − 9 ( 4 ) t ( 3 4 ) + c
Comments