Answer to Question #98137 in Calculus for jevony

Question #98137
Evaluating Integrals

7.Integral of (3c^2x^2-d^4)^2 dx
8. Integral of (square root of 2x + 2x square root of x + 1/ square root of x) dx
9. Integral of t^3 + 2t^2- 3 / cube root of t
1
Expert's answer
2019-11-06T10:11:33-0500

Evaluating Integrals



We apply a formula

"\\int x^n dx = \\frac {x^{n+1}} {n+1}"


"7 ). \\space \\space \\int (3 c^2 x^2 - d^4 )^2 \\space dx"

  (Expand this )

"=\\int ( 9 c^4 x^4 - 6c^2 d^4 x^2 +d^8 ) dx"


"=9 c^4 \\int x^4 dx - 6c^2 d^4 \\int x^2 \\space dx +d^8 \\int dx + k"

"= 9c^4 \\frac {x^5}{5} - 6c^2 d^4 \\frac {x^3}{3} + d^8 x + k"

Answer :

"= 9c^4 \\frac {x^5}{5} - 2 c^2 d^4 {x^3} + d^8 \\space x + k"

"8). \\space \\space \\int (\\sqrt {2x} + 2x \\sqrt x \\space + \\frac {1} {\\sqrt x} ) \\space dx"


"=\\sqrt 2 \\int \\sqrt x \\space dx + 2 \\int x \\sqrt x \\space dx + \\int \\frac {1} {\\sqrt x} \\space dx + c"

"=\\sqrt 2 \\int x^{\\frac {1}{2}} \\space dx + 2 \\int x \\times x^\\frac {1}{2} \\space dx + \\int { x^{(-\\frac {1}{2})}} \\space dx + c"

"=\\sqrt 2 \\int x^{\\frac {1}{2}} \\space dx + 2 \\int x^\\frac {3}{2} \\space dx + \\int { x^{(-\\frac {1}{2})}} \\space dx + c"

Answer:

"= \\sqrt2 \\frac {x^{(\\frac {1}{2} +1)}}{(\\frac {1}{2} +1)} + 2 \\frac {x^{(\\frac {3}{2} +1)}}{(\\frac {3}{2} +1)} + \\frac {x^{(-\\frac {1}{2} +1)}}{(-\\frac {1}{2} +1)} + c"


9).



"\\int ( t^3 + 2 t^2 - 3 t^ {\\frac {1}{3}}) \\space dt" =

"\\int t^3 dt + 2 \\int t^2 dt - 3 \\int t^ {\\frac {1}{3}} \\space dt + c"


"= \\frac {t^{(3 +1)}}{(3 +1)} + 2 \\frac {t^{({2} +1)}}{({2} +1)} - 3 \\frac {t^{(\\frac {1}{3} +1)}}{(\\frac {1}{3} +1)} + c"

Answer:

"= \\frac {t^{4}}{4} + 2 \\frac {t^{{3}}}{3} - 9 \\frac {t^{(\\frac {4}{3} )}}{( {4})} + c"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS