Question #98137
Evaluating Integrals

7.Integral of (3c^2x^2-d^4)^2 dx
8. Integral of (square root of 2x + 2x square root of x + 1/ square root of x) dx
9. Integral of t^3 + 2t^2- 3 / cube root of t
1
Expert's answer
2019-11-06T10:11:33-0500

Evaluating Integrals



We apply a formula

xndx=xn+1n+1\int x^n dx = \frac {x^{n+1}} {n+1}


7).  (3c2x2d4)2 dx7 ). \space \space \int (3 c^2 x^2 - d^4 )^2 \space dx

  (Expand this )

=(9c4x46c2d4x2+d8)dx=\int ( 9 c^4 x^4 - 6c^2 d^4 x^2 +d^8 ) dx


=9c4x4dx6c2d4x2 dx+d8dx+k=9 c^4 \int x^4 dx - 6c^2 d^4 \int x^2 \space dx +d^8 \int dx + k

=9c4x556c2d4x33+d8x+k= 9c^4 \frac {x^5}{5} - 6c^2 d^4 \frac {x^3}{3} + d^8 x + k

Answer :

=9c4x552c2d4x3+d8 x+k= 9c^4 \frac {x^5}{5} - 2 c^2 d^4 {x^3} + d^8 \space x + k

8).  (2x+2xx +1x) dx8). \space \space \int (\sqrt {2x} + 2x \sqrt x \space + \frac {1} {\sqrt x} ) \space dx


=2x dx+2xx dx+1x dx+c=\sqrt 2 \int \sqrt x \space dx + 2 \int x \sqrt x \space dx + \int \frac {1} {\sqrt x} \space dx + c

=2x12 dx+2x×x12 dx+x(12) dx+c=\sqrt 2 \int x^{\frac {1}{2}} \space dx + 2 \int x \times x^\frac {1}{2} \space dx + \int { x^{(-\frac {1}{2})}} \space dx + c

=2x12 dx+2x32 dx+x(12) dx+c=\sqrt 2 \int x^{\frac {1}{2}} \space dx + 2 \int x^\frac {3}{2} \space dx + \int { x^{(-\frac {1}{2})}} \space dx + c

Answer:

=2x(12+1)(12+1)+2x(32+1)(32+1)+x(12+1)(12+1)+c= \sqrt2 \frac {x^{(\frac {1}{2} +1)}}{(\frac {1}{2} +1)} + 2 \frac {x^{(\frac {3}{2} +1)}}{(\frac {3}{2} +1)} + \frac {x^{(-\frac {1}{2} +1)}}{(-\frac {1}{2} +1)} + c


9).



(t3+2t23t13) dt\int ( t^3 + 2 t^2 - 3 t^ {\frac {1}{3}}) \space dt =

t3dt+2t2dt3t13 dt+c\int t^3 dt + 2 \int t^2 dt - 3 \int t^ {\frac {1}{3}} \space dt + c


=t(3+1)(3+1)+2t(2+1)(2+1)3t(13+1)(13+1)+c= \frac {t^{(3 +1)}}{(3 +1)} + 2 \frac {t^{({2} +1)}}{({2} +1)} - 3 \frac {t^{(\frac {1}{3} +1)}}{(\frac {1}{3} +1)} + c

Answer:

=t44+2t339t(43)(4)+c= \frac {t^{4}}{4} + 2 \frac {t^{{3}}}{3} - 9 \frac {t^{(\frac {4}{3} )}}{( {4})} + c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS