The solution of the problem uses a general formula for the integral of the power function
"\\int x^n dx=x^{n+1}\/(n+1)"
1 Evaluate the integral"\\int 3dy\/y^4"
Solution: "\\int 3dy\/y^4=3\\int y^{-4}dy=3 y^{-4+1}\/(-4+1)+C=3 y^{-3}\/(-3)+C=-1\/y^3+C"
Answer: "\\int 3dy\/y^4=-1\/y^3+C"
2 Evaluate the integral "\\int (\\sqrt{x}-x\/3+2\/\\sqrt{x})dx"
Solution: "\\int (\\sqrt{x}-x\/3+2\/\\sqrt{x})dx=I_1- (1\/3) I_2+2 I_3"
"I_1=\\int\\sqrt{x}dx= \\int x^{1\/2} dx =x^{1\/2+1}\/(1\/2+1)+C_1= x \\sqrt{x}\/(3\/2)+C_1=2x\\sqrt{x}\/3+C_1"
"I_2=\\int x dx=x^{1+1}\/(1+1)+C_2=x^2\/2+C_2"
"I_3=\\int dx\/\\sqrt{x}=\\int x^{-1\/2} dx=x^{1-1\/2}\/(1-1\/2)+C_3=x^{1\/2}\/(1\/2)+C_3=2\\sqrt{x}+C_3"
Substitution integrals into the formula gives the answer.
Answer: "\\int (\\sqrt{x}-x\/3+2\/\\sqrt{x})dx=2 x \\sqrt{x}\/3 - x^2\/6 + 4 \\sqrt{x}+C"
Comments
Leave a comment