The solution of the problem uses a general formula for the integral of the power function
∫ x n d x = x n + 1 / ( n + 1 ) \int x^n dx=x^{n+1}/(n+1) ∫ x n d x = x n + 1 / ( n + 1 )
1 Evaluate the integral∫ 3 d y / y 4 \int 3dy/y^4 ∫ 3 d y / y 4
Solution: ∫ 3 d y / y 4 = 3 ∫ y − 4 d y = 3 y − 4 + 1 / ( − 4 + 1 ) + C = 3 y − 3 / ( − 3 ) + C = − 1 / y 3 + C \int 3dy/y^4=3\int y^{-4}dy=3 y^{-4+1}/(-4+1)+C=3 y^{-3}/(-3)+C=-1/y^3+C ∫ 3 d y / y 4 = 3 ∫ y − 4 d y = 3 y − 4 + 1 / ( − 4 + 1 ) + C = 3 y − 3 / ( − 3 ) + C = − 1/ y 3 + C
Answer: ∫ 3 d y / y 4 = − 1 / y 3 + C \int 3dy/y^4=-1/y^3+C ∫ 3 d y / y 4 = − 1/ y 3 + C
2 Evaluate the integral ∫ ( x − x / 3 + 2 / x ) d x \int (\sqrt{x}-x/3+2/\sqrt{x})dx ∫ ( x − x /3 + 2/ x ) d x
Solution: ∫ ( x − x / 3 + 2 / x ) d x = I 1 − ( 1 / 3 ) I 2 + 2 I 3 \int (\sqrt{x}-x/3+2/\sqrt{x})dx=I_1- (1/3) I_2+2 I_3 ∫ ( x − x /3 + 2/ x ) d x = I 1 − ( 1/3 ) I 2 + 2 I 3
I 1 = ∫ x d x = ∫ x 1 / 2 d x = x 1 / 2 + 1 / ( 1 / 2 + 1 ) + C 1 = x x / ( 3 / 2 ) + C 1 = 2 x x / 3 + C 1 I_1=\int\sqrt{x}dx= \int x^{1/2} dx =x^{1/2+1}/(1/2+1)+C_1= x \sqrt{x}/(3/2)+C_1=2x\sqrt{x}/3+C_1 I 1 = ∫ x d x = ∫ x 1/2 d x = x 1/2 + 1 / ( 1/2 + 1 ) + C 1 = x x / ( 3/2 ) + C 1 = 2 x x /3 + C 1
I 2 = ∫ x d x = x 1 + 1 / ( 1 + 1 ) + C 2 = x 2 / 2 + C 2 I_2=\int x dx=x^{1+1}/(1+1)+C_2=x^2/2+C_2 I 2 = ∫ x d x = x 1 + 1 / ( 1 + 1 ) + C 2 = x 2 /2 + C 2
I 3 = ∫ d x / x = ∫ x − 1 / 2 d x = x 1 − 1 / 2 / ( 1 − 1 / 2 ) + C 3 = x 1 / 2 / ( 1 / 2 ) + C 3 = 2 x + C 3 I_3=\int dx/\sqrt{x}=\int x^{-1/2} dx=x^{1-1/2}/(1-1/2)+C_3=x^{1/2}/(1/2)+C_3=2\sqrt{x}+C_3 I 3 = ∫ d x / x = ∫ x − 1/2 d x = x 1 − 1/2 / ( 1 − 1/2 ) + C 3 = x 1/2 / ( 1/2 ) + C 3 = 2 x + C 3
Substitution integrals into the formula gives the answer.
Answer: ∫ ( x − x / 3 + 2 / x ) d x = 2 x x / 3 − x 2 / 6 + 4 x + C \int (\sqrt{x}-x/3+2/\sqrt{x})dx=2 x \sqrt{x}/3 - x^2/6 + 4 \sqrt{x}+C ∫ ( x − x /3 + 2/ x ) d x = 2 x x /3 − x 2 /6 + 4 x + C
Comments