The solution of the problem uses a general formula for the integral of the power function
∫xndx=xn+1/(n+1)
1 Evaluate the integral∫3dy/y4
Solution: ∫3dy/y4=3∫y−4dy=3y−4+1/(−4+1)+C=3y−3/(−3)+C=−1/y3+C
Answer: ∫3dy/y4=−1/y3+C
2 Evaluate the integral ∫(x−x/3+2/x)dx
Solution: ∫(x−x/3+2/x)dx=I1−(1/3)I2+2I3
I1=∫xdx=∫x1/2dx=x1/2+1/(1/2+1)+C1=xx/(3/2)+C1=2xx/3+C1
I2=∫xdx=x1+1/(1+1)+C2=x2/2+C2
I3=∫dx/x=∫x−1/2dx=x1−1/2/(1−1/2)+C3=x1/2/(1/2)+C3=2x+C3
Substitution integrals into the formula gives the answer.
Answer: ∫(x−x/3+2/x)dx=2xx/3−x2/6+4x+C
Comments