Question #98133
Evaluate the following integrals. Show complete solution.

1. Integral of 3dy/ y raised to the fourth power
2. Integral of square root of x minus x/3 plus 2/ square root of x dx
1
Expert's answer
2019-11-12T11:39:57-0500

The solution of the problem uses a general formula for the integral of the power function

xndx=xn+1/(n+1)\int x^n dx=x^{n+1}/(n+1)


1 Evaluate the integral3dy/y4\int 3dy/y^4

Solution: 3dy/y4=3y4dy=3y4+1/(4+1)+C=3y3/(3)+C=1/y3+C\int 3dy/y^4=3\int y^{-4}dy=3 y^{-4+1}/(-4+1)+C=3 y^{-3}/(-3)+C=-1/y^3+C

Answer: 3dy/y4=1/y3+C\int 3dy/y^4=-1/y^3+C


2 Evaluate the integral (xx/3+2/x)dx\int (\sqrt{x}-x/3+2/\sqrt{x})dx

Solution: (xx/3+2/x)dx=I1(1/3)I2+2I3\int (\sqrt{x}-x/3+2/\sqrt{x})dx=I_1- (1/3) I_2+2 I_3

I1=xdx=x1/2dx=x1/2+1/(1/2+1)+C1=xx/(3/2)+C1=2xx/3+C1I_1=\int\sqrt{x}dx= \int x^{1/2} dx =x^{1/2+1}/(1/2+1)+C_1= x \sqrt{x}/(3/2)+C_1=2x\sqrt{x}/3+C_1

I2=xdx=x1+1/(1+1)+C2=x2/2+C2I_2=\int x dx=x^{1+1}/(1+1)+C_2=x^2/2+C_2

I3=dx/x=x1/2dx=x11/2/(11/2)+C3=x1/2/(1/2)+C3=2x+C3I_3=\int dx/\sqrt{x}=\int x^{-1/2} dx=x^{1-1/2}/(1-1/2)+C_3=x^{1/2}/(1/2)+C_3=2\sqrt{x}+C_3

Substitution integrals into the formula gives the answer.

Answer: (xx/3+2/x)dx=2xx/3x2/6+4x+C\int (\sqrt{x}-x/3+2/\sqrt{x})dx=2 x \sqrt{x}/3 - x^2/6 + 4 \sqrt{x}+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS