Question #97980
Find the roots of the function f(x) = 3^x · (log base2(x) − 3)^5 · e^x²−3x
.
1
Expert's answer
2019-11-05T14:14:26-0500
f(x)=3x(log2(x)3)5ex23xf(x)=3^x(\log_2(x)-3)^5e^{x^2}-3x

Domain

D(f):(0,)D(f): (0, \infin)

If 0<x<8,0<x<8, then log2(x)3<0.\log_2(x)-3<0. Hence f(x)<0f(x)<0 for 0<x<8.0<x<8.

Find the first derivative


f(x)=3xln3(log2(x)3)5ex2+f'(x)=3^x\cdot\ln3\cdot(\log_2(x)-3)^5e^{x^2}++53x1xln2(log2(x)3)4ex2++5\cdot3^x\cdot{1 \over x\ln2}(\log_2(x)-3)^4e^{x^2}++2x3x(log2(x)3)5ex23+2x\cdot3^x(\log_2(x)-3)^5e^{x^2}-3


Find the second derivative


f(x)=3x(ln3)2(log2(x)3)5ex2+f''(x)=3^x\cdot(\ln3)^2\cdot(\log_2(x)-3)^5e^{x^2}++53xln3xln2(log2(x)3)4ex2++5\cdot3^x\cdot{\ln3 \over x\ln2}\cdot(\log_2(x)-3)^4e^{x^2}++2xln33x(log2(x)3)5ex2++2x\ln3\cdot3^x(\log_2(x)-3)^5e^{x^2}++53xln3xln2(log2(x)3)4ex2+5\cdot3^x\cdot{\ln3 \over x\ln2}(\log_2(x)-3)^4e^{x^2}-53x1x2ln2(log2(x)3)4ex2+-5\cdot3^x\cdot{1 \over x^2\ln2}(\log_2(x)-3)^4e^{x^2}++203xln3x2(ln2)2(log2(x)3)3ex2++20\cdot3^x\cdot{\ln3 \over x^2(\ln2)^2}\cdot(\log_2(x)-3)^3e^{x^2}++103x1ln2(log2(x)3)4ex2++10\cdot3^x\cdot{1 \over \ln2}(\log_2(x)-3)^4e^{x^2}++23x(log2(x)3)5ex2+2\cdot3^x(\log_2(x)-3)^5e^{x^2}+2xln33x(log2(x)3)5ex2+2x\cdot\ln3\cdot3^x(\log_2(x)-3)^5e^{x^2}+103x1ln2(log2(x)3)4ex2++10\cdot3^x\cdot{1 \over \ln2}(\log_2(x)-3)^4e^{x^2}++4x23x(log2(x)3)5ex2+4x^2\cdot3^x(\log_2(x)-3)^5e^{x^2}

If x>8,x>8, then f(x)>0.f''(x)>0. Hence f(x)f'(x) increases for x>8.x>8.

f(8)=24<0,f(8)=-24<0,

f(8)=3<0,f'(8)=-3<0,

f(8)=0.f''(8)=0.


f(8.0000000936436)24.0000f(8.0000000936436)\approx-24.0000

f(8.0000000936436)=0.000011>0f'(8.0000000936436)=0.000011>0


f(8.00000498410413474204)0.0000000729f(8.00000498410413474204)\approx-0.0000000729

f(8.00000498410413474205)0.00000004565f(8.00000498410413474205)\approx0.00000004565


The only root


x8.00000498410413474205x\approx8.00000498410413474205

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS