Answer to Question #97980 in Calculus for Paul

Question #97980
Find the roots of the function f(x) = 3^x · (log base2(x) − 3)^5 · e^x²−3x
.
1
Expert's answer
2019-11-05T14:14:26-0500
"f(x)=3^x(\\log_2(x)-3)^5e^{x^2}-3x"

Domain

"D(f): (0, \\infin)"

If "0<x<8," then "\\log_2(x)-3<0." Hence "f(x)<0" for "0<x<8."

Find the first derivative


"f'(x)=3^x\\cdot\\ln3\\cdot(\\log_2(x)-3)^5e^{x^2}+""+5\\cdot3^x\\cdot{1 \\over x\\ln2}(\\log_2(x)-3)^4e^{x^2}+""+2x\\cdot3^x(\\log_2(x)-3)^5e^{x^2}-3"


Find the second derivative


"f''(x)=3^x\\cdot(\\ln3)^2\\cdot(\\log_2(x)-3)^5e^{x^2}+""+5\\cdot3^x\\cdot{\\ln3 \\over x\\ln2}\\cdot(\\log_2(x)-3)^4e^{x^2}+""+2x\\ln3\\cdot3^x(\\log_2(x)-3)^5e^{x^2}+""+5\\cdot3^x\\cdot{\\ln3 \\over x\\ln2}(\\log_2(x)-3)^4e^{x^2}-""-5\\cdot3^x\\cdot{1 \\over x^2\\ln2}(\\log_2(x)-3)^4e^{x^2}+""+20\\cdot3^x\\cdot{\\ln3 \\over x^2(\\ln2)^2}\\cdot(\\log_2(x)-3)^3e^{x^2}+""+10\\cdot3^x\\cdot{1 \\over \\ln2}(\\log_2(x)-3)^4e^{x^2}+""+2\\cdot3^x(\\log_2(x)-3)^5e^{x^2}""+2x\\cdot\\ln3\\cdot3^x(\\log_2(x)-3)^5e^{x^2}""+10\\cdot3^x\\cdot{1 \\over \\ln2}(\\log_2(x)-3)^4e^{x^2}+""+4x^2\\cdot3^x(\\log_2(x)-3)^5e^{x^2}"

If "x>8," then "f''(x)>0." Hence "f'(x)" increases for "x>8."

"f(8)=-24<0,"

"f'(8)=-3<0,"

"f''(8)=0."


"f(8.0000000936436)\\approx-24.0000"

"f'(8.0000000936436)=0.000011>0"


"f(8.00000498410413474204)\\approx-0.0000000729"

"f(8.00000498410413474205)\\approx0.00000004565"


The only root


"x\\approx8.00000498410413474205"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS