f(x)=3x(log2(x)−3)5ex2−3x Domain
D(f):(0,∞)
If 0<x<8, then log2(x)−3<0. Hence f(x)<0 for 0<x<8.
Find the first derivative
f′(x)=3x⋅ln3⋅(log2(x)−3)5ex2++5⋅3x⋅xln21(log2(x)−3)4ex2++2x⋅3x(log2(x)−3)5ex2−3
Find the second derivative
f′′(x)=3x⋅(ln3)2⋅(log2(x)−3)5ex2++5⋅3x⋅xln2ln3⋅(log2(x)−3)4ex2++2xln3⋅3x(log2(x)−3)5ex2++5⋅3x⋅xln2ln3(log2(x)−3)4ex2−−5⋅3x⋅x2ln21(log2(x)−3)4ex2++20⋅3x⋅x2(ln2)2ln3⋅(log2(x)−3)3ex2++10⋅3x⋅ln21(log2(x)−3)4ex2++2⋅3x(log2(x)−3)5ex2+2x⋅ln3⋅3x(log2(x)−3)5ex2+10⋅3x⋅ln21(log2(x)−3)4ex2++4x2⋅3x(log2(x)−3)5ex2 If x>8, then f′′(x)>0. Hence f′(x) increases for x>8.
f(8)=−24<0,
f′(8)=−3<0,
f′′(8)=0.
f(8.0000000936436)≈−24.0000
f′(8.0000000936436)=0.000011>0
f(8.00000498410413474204)≈−0.0000000729
f(8.00000498410413474205)≈0.00000004565
The only root
x≈8.00000498410413474205
Comments