Question #97940
Find a parametric representation g(s,t) of the part of the one-sheeted hy-perboloid x^2/a^2+y^2/a^2−z^2/c^2= 1 that lies between z=−1 and z= 1
1
Expert's answer
2019-11-04T09:39:40-0500

If in the form


x2a2+y2b2z2c2=1{x^2 \over a^2}+{y^2\over b^2}-{z^2 \over c^2}=1

then let z=cv,vz=cv, v as one parameter, and then, the equation can be rewritten in the following way:


x2a2+y2b2c2v2c2=1{x^2 \over a^2}+{y^2\over b^2}-{c^2v^2 \over c^2}=1x2a2+y2b2=1+v2{x^2 \over a^2}+{y^2\over b^2}=1+v^2

Let x=a1+v2cosu,y=b1+v2sinu.x=a\sqrt{1+v^2}\cos u, y=b\sqrt{1+v^2}\sin u. Then

(a1+v2cosu)2a2+(b1+v2sinu)2b2=1+v2,{(a\sqrt{1+v^2}\cos u)^2 \over a^2}+{(b\sqrt{1+v^2}\sin u)^2\over b^2}=1+v^2,

x=a1+v2cosu,x=a\sqrt{1+v^2}\cos u,y=b1+v2sinu,y=b\sqrt{1+v^2}\sin u,z=cv,z=cv,u[0,2π),v[1c,1c].u\in[0, 2\pi), v\in\big [-{ 1\over c} , {1 \over c} \big].

Other parameterizations include


x=acoshvcosu,x=a\cosh{v}\cos{u},

y=bcoshvsinu,y=b\cosh{v}\sin{u},

z=csinhv,z=c\sinh{v},

u[0,2π),v[sinh1(1c),sinh1(1c)].u\in[0, 2\pi), v\in\big [-\sinh^{-1}({ 1\over c}) , \sinh^{-1}({ 1\over c})].


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS