If in the form
a2x2+b2y2−c2z2=1 then let z=cv,v as one parameter, and then, the equation can be rewritten in the following way:
a2x2+b2y2−c2c2v2=1a2x2+b2y2=1+v2 Let x=a1+v2cosu,y=b1+v2sinu. Then
a2(a1+v2cosu)2+b2(b1+v2sinu)2=1+v2,
x=a1+v2cosu,y=b1+v2sinu,z=cv,u∈[0,2π),v∈[−c1,c1]. Other parameterizations include
x=acoshvcosu,
y=bcoshvsinu,
z=csinhv,
u∈[0,2π),v∈[−sinh−1(c1),sinh−1(c1)].
Comments