If in the form
then let "z=cv, v" as one parameter, and then, the equation can be rewritten in the following way:
Let "x=a\\sqrt{1+v^2}\\cos u, y=b\\sqrt{1+v^2}\\sin u." Then
"{(a\\sqrt{1+v^2}\\cos u)^2 \\over a^2}+{(b\\sqrt{1+v^2}\\sin u)^2\\over b^2}=1+v^2,"
"x=a\\sqrt{1+v^2}\\cos u,""y=b\\sqrt{1+v^2}\\sin u,""z=cv,""u\\in[0, 2\\pi), v\\in\\big [-{ 1\\over c} , {1 \\over c} \\big]."
Other parameterizations include
"y=b\\cosh{v}\\sin{u},"
"z=c\\sinh{v},"
"u\\in[0, 2\\pi), v\\in\\big [-\\sinh^{-1}({ 1\\over c}) , \\sinh^{-1}({ 1\\over c})]."
Comments
Leave a comment