Denote by D the region volume is to be calculated. Volume D is VD="\\underset { D }{ \\iiint } dxdydz" . To calculate the integral we use the change of variables :
"\\begin{matrix} x=r\\cos ^{ 4 }{ \\varphi \\sin ^{ 4 }{ \\theta } } \\\\ y=r\\sin ^{ 4 }{ \\varphi \\sin ^{ 4 }{ \\theta } } \\\\ z=r\\cos ^{ 4 }{ \\theta } \\end{matrix}" . (1)
"\\sqrt { x } +\\sqrt { y } +\\sqrt { z } =\\sqrt { r } =1"
The image of the region D is the region Δ "=\\left\\{ \\left( r,\\varphi ,\\theta \\right) :\\quad 0\\le r\\le 1,\\quad 0\\le \\varphi \\le \\frac { \\pi }{ 2 } ,0\\le \\theta \\le \\frac { \\pi }{ 2 } \\right\\}"
"\\underset { D }{ \\iiint } dxdydz\\quad =\\underset { \\Delta }{ \\iiint } \\quad \\left| \\frac { \\partial (x,y,z) }{ \\partial (r,\\varphi ,\\theta ) } \\right| drd\\varphi d\\theta" , where "\\frac { \\partial (x,y,z) }{ \\partial (r,\\varphi ,\\theta ) } =det\\left( \\begin{matrix} \\cos ^{ 4 }{ \\varphi \\sin ^{ 4 }{ \\theta } } & -4r\\cos ^{ 3 }{ \\varphi \\sin { \\varphi } \\sin ^{ 4 }{ \\theta } } & 4r\\cos ^{ 4 }{ \\varphi \\sin ^{ 3 }{ \\theta } \\cos { \\theta } \\quad } \\\\ \\sin ^{ 4 }{ \\varphi \\sin ^{ 4 }{ \\theta } } & 4r\\sin ^{ 3 }{ \\varphi \\cos { \\varphi } \\sin ^{ 4 }{ \\theta } } & 4r\\sin ^{ 4 }{ \\varphi \\sin ^{ 3 }{ \\theta \\cos { \\theta } } } \\\\ \\cos ^{ 4 }{ \\theta } & 0 & -4r\\cos ^{ 3 }{ \\theta } \\sin { \\theta } \\end{matrix} \\right) \\quad" =
"=-16{ r }^{ 2 }\\cos ^{ 3 }{ \\theta } \\cos ^{ 3 }{ \\varphi } \\sin ^{ 3 }{ \\varphi } \\sin ^{ 7 }{ \\theta }" .
VD= "\\int _{ 0 }^{ 1 }{ \\int _{ 0 }^{ \\frac { \\pi }{ 2 } }{ \\int _{ 0 }^{ \\frac { \\pi }{ 2 } }{ 16{ r }^{ 2 } } \\cos ^{ 3 }{ \\theta } \\cos ^{ 3 }{ \\varphi } \\sin ^{ 3 }{ \\varphi } \\sin ^{ 7 }{ \\theta } drd\\varphi d\\theta \\quad =\\frac { 16 }{ 3 } \\cdot \\frac { 1 }{ 12 } \\cdot } \\frac { 1 }{ 40 } } =\\frac { 1 }{ 90 }" , because
"\\int _{ 0 }^{ \\frac { \\pi }{ 2 } }{ \\cos ^{ 3 }{ \\varphi } \\sin ^{ 3 }{ \\varphi } d\\varphi } =\\int _{ 0 }^{ \\frac { \\pi }{ 2 } }{ \\cos ^{ 2 }{ \\varphi } \\sin ^{ 3 }{ \\varphi } d\\left( \\sin { \\varphi } \\right) } =\\int _{ 0 }^{ 1 }{ \\left( 1-{ t }^{ 2 } \\right) { t }^{ 3 } } dt=\\frac { 1 }{ 4 } -\\frac { 1 }{ 6 } =\\frac { 1 }{ 12 } \\quad \\\\ \\int _{ 0 }^{ \\frac { \\pi }{ 2 } }{ \\cos ^{ 3 }{ \\theta \\sin ^{ 7 }{ \\theta d\\theta } } } =\\int _{ 0 }^{ \\frac { \\pi }{ 2 } }{ \\cos ^{ 2 }{ \\theta \\sin ^{ 7 }{ \\theta d\\left( \\sin { \\theta } \\right) } } } =\\int _{ 0 }^{ 1 }{ \\left( 1-{ t }^{ 2 } \\right) { t }^{ 7 }dt } =\\frac { 1 }{ 8 } -\\frac { 1 }{ 10 } =\\frac { 1 }{ 40 }"
"\\int _{ 0 }^{ 1 }{ 16{ r }^{ 2 } } dr=\\frac { 16 }{ 3 }"
ANSWER The volume is "\\frac{1}{90}".
Comments
Leave a comment