Use a transformation of variables to find the volume of the region bounded by√x+√y+√z= 1 and the coordinate planes.
1
Expert's answer
2019-11-04T09:34:30-0500
Denote by D the region volume is to be calculated. Volume D is VD=D∭dxdydz . To calculate the integral we use the change of variables :
x=rcos4φsin4θy=rsin4φsin4θz=rcos4θ . (1)
x+y+z=r=1
The image of the region D is the region Δ ={(r,φ,θ):0≤r≤1,0≤φ≤2π,0≤θ≤2π}
D∭dxdydz=Δ∭∣∣∂(r,φ,θ)∂(x,y,z)∣∣drdφdθ , where ∂(r,φ,θ)∂(x,y,z)=det⎝⎛cos4φsin4θsin4φsin4θcos4θ−4rcos3φsinφsin4θ4rsin3φcosφsin4θ04rcos4φsin3θcosθ4rsin4φsin3θcosθ−4rcos3θsinθ⎠⎞ =
=−16r2cos3θcos3φsin3φsin7θ .
VD= ∫01∫02π∫02π16r2cos3θcos3φsin3φsin7θdrdφdθ=316⋅121⋅401=901 , because
Finding a professional expert in "partial differential equations" in the advanced level is difficult.
You can find this expert in "Assignmentexpert.com" with confidence.
Exceptional experts! I appreciate your help. God bless you!
Comments