Question #97875
f(x)= (10^x +logx)/√x find f'(x)=?
1
Expert's answer
2019-11-04T09:54:46-0500
f(x)=10x+log(x)x=10x+ln(x)xf(x)={10^x+\log(x) \over \sqrt{x}}={10^x+\ln(x) \over \sqrt{x}}

Find f(x)f'(x)


f(x)=(10x+ln(x)x)=f'(x)=\big({10^x+\ln(x) \over \sqrt{x}}\big)'=

=(10x+ln(x))x(x)(10x+ln(x))(x)2=={(10^x+\ln(x))'\sqrt{x} -(\sqrt{x})'(10^x+\ln(x))\over( \sqrt{x})^2}=

=ln(10)10xx+1xx12x(10x+ln(x))x=={\ln(10)\cdot10^x\sqrt{x}+{1 \over x}\cdot\sqrt{x} -{1 \over 2\sqrt{x}}(10^x+\ln(x))\over x}=

=2ln(10)x10x+210xln(x)2x32={2\ln(10)\cdot x\cdot10^x+2 -10^x-\ln(x)\over 2x^{{3 \over 2}}}


f(x)=2ln(10)x10x+210xln(x)2x32f'(x)={2\ln(10)\cdot x\cdot10^x+2 -10^x-\ln(x)\over 2x^{{3 \over 2}}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS