Answer to Question #97875 in Calculus for Tarun Tirthani
f(x)= (10^x +logx)/√x find f'(x)=?
1
2019-11-04T09:54:46-0500
"f(x)={10^x+\\log(x) \\over \\sqrt{x}}={10^x+\\ln(x) \\over \\sqrt{x}}" Find "f'(x)"
"f'(x)=\\big({10^x+\\ln(x) \\over \\sqrt{x}}\\big)'="
"={(10^x+\\ln(x))'\\sqrt{x} -(\\sqrt{x})'(10^x+\\ln(x))\\over( \\sqrt{x})^2}="
"={\\ln(10)\\cdot10^x\\sqrt{x}+{1 \\over x}\\cdot\\sqrt{x} -{1 \\over 2\\sqrt{x}}(10^x+\\ln(x))\\over x}="
"={2\\ln(10)\\cdot x\\cdot10^x+2 -10^x-\\ln(x)\\over 2x^{{3 \\over 2}}}"
"f'(x)={2\\ln(10)\\cdot x\\cdot10^x+2 -10^x-\\ln(x)\\over 2x^{{3 \\over 2}}}"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment