2019-11-02T18:37:25-04:00
f(x)= (10^x +logx)/√x find f'(x)=?
1
2019-11-04T09:54:46-0500
f ( x ) = 1 0 x + log ( x ) x = 1 0 x + ln ( x ) x f(x)={10^x+\log(x) \over \sqrt{x}}={10^x+\ln(x) \over \sqrt{x}} f ( x ) = x 1 0 x + log ( x ) = x 1 0 x + ln ( x ) Find f ′ ( x ) f'(x) f ′ ( x )
f ′ ( x ) = ( 1 0 x + ln ( x ) x ) ′ = f'(x)=\big({10^x+\ln(x) \over \sqrt{x}}\big)'= f ′ ( x ) = ( x 1 0 x + ln ( x ) ) ′ =
= ( 1 0 x + ln ( x ) ) ′ x − ( x ) ′ ( 1 0 x + ln ( x ) ) ( x ) 2 = ={(10^x+\ln(x))'\sqrt{x} -(\sqrt{x})'(10^x+\ln(x))\over( \sqrt{x})^2}= = ( x ) 2 ( 1 0 x + ln ( x ) ) ′ x − ( x ) ′ ( 1 0 x + ln ( x )) =
= ln ( 10 ) ⋅ 1 0 x x + 1 x ⋅ x − 1 2 x ( 1 0 x + ln ( x ) ) x = ={\ln(10)\cdot10^x\sqrt{x}+{1 \over x}\cdot\sqrt{x} -{1 \over 2\sqrt{x}}(10^x+\ln(x))\over x}= = x ln ( 10 ) ⋅ 1 0 x x + x 1 ⋅ x − 2 x 1 ( 1 0 x + ln ( x )) =
= 2 ln ( 10 ) ⋅ x ⋅ 1 0 x + 2 − 1 0 x − ln ( x ) 2 x 3 2 ={2\ln(10)\cdot x\cdot10^x+2 -10^x-\ln(x)\over 2x^{{3 \over 2}}} = 2 x 2 3 2 ln ( 10 ) ⋅ x ⋅ 1 0 x + 2 − 1 0 x − ln ( x )
f ′ ( x ) = 2 ln ( 10 ) ⋅ x ⋅ 1 0 x + 2 − 1 0 x − ln ( x ) 2 x 3 2 f'(x)={2\ln(10)\cdot x\cdot10^x+2 -10^x-\ln(x)\over 2x^{{3 \over 2}}} f ′ ( x ) = 2 x 2 3 2 ln ( 10 ) ⋅ x ⋅ 1 0 x + 2 − 1 0 x − ln ( x )
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments