By definition, the angles coterminal with "\\alpha" are: "\\alpha +360\\degree" and "\\alpha -360\\degree" .(or "\\alpha +2\\pi" and "\\alpha -2\\pi)"
- "\\dfrac{\\pi}{2} + 2\\pi = \\dfrac{5\\pi}{2}; \\quad \\dfrac{\\pi}{2} - 2\\pi = -\\dfrac{3\\pi}{2}"
- "\\dfrac{3\\pi}{2} + 2\\pi = \\dfrac{7\\pi}{2}; \\quad \\dfrac{3\\pi}{2} - 2\\pi = -\\dfrac{\\pi}{2}"
- "-\\dfrac{\\pi}{2} + 2\\pi = \\dfrac{3\\pi}{2}; \\quad -\\dfrac{\\pi}{2} - 2\\pi = -\\dfrac{5\\pi}{2}"
- "\\dfrac{\\pi}{2} +2\\pi+ 2\\pi = \\dfrac{9\\pi}{2}; \\quad \\dfrac{\\pi}{2} +2\\pi - 2\\pi = \\dfrac{\\pi}{2}"
- "\\dfrac{\\pi}{2} -2\\pi+ 2\\pi = \\dfrac{\\pi}{2}; \\quad \\dfrac{\\pi}{2} -2\\pi - 2\\pi = -\\dfrac{7\\pi}{2}"
- "\\dfrac{5\\pi}{2} + 2\\pi = \\dfrac{9\\pi}{2}; \\quad \\dfrac{5\\pi}{2} - 2\\pi = \\dfrac{\\pi}{2}"
- "-\\dfrac{\\pi}{2} + 2\\pi = \\dfrac{3\\pi}{2}; \\quad -\\dfrac{\\pi}{2} - 2\\pi = -\\dfrac{5\\pi}{2}"
- "-\\dfrac{3\\pi}{2} + 2\\pi = \\dfrac{\\pi}{2}; \\quad - \\dfrac{3\\pi}{2} - 2\\pi = -\\dfrac{7 \\pi}{2}"
Comments
Leave a comment