f ^ ( ω ) = 1 ( 2 π ) n 2 ∫ R n f ( x ) e − i ( x , ω ) d x \hat{f}(\omega)=\frac{1}{(2\pi)^{\frac{n}{2}}}\int\limits_{\mathbb R^n}f(x)e^{-i(x,\omega)}dx f ^ ( ω ) = ( 2 π ) 2 n 1 R n ∫ f ( x ) e − i ( x , ω ) d x
f ^ ( ω ) = 1 ( 2 π ) n 2 ∫ R n x α e − i ( x , ω ) d x = 1 ( 2 π ) n 2 ∫ R n ∏ k = 1 n x k α k e − i x k ω k d x = \hat{f}(\omega)=\frac{1}{(2\pi)^{\frac{n}{2}}}\int\limits_{\mathbb R^n}x^{\alpha}e^{-i(x,\omega)}dx=\frac{1}{(2\pi)^{\frac{n}{2}}}\int\limits_{\mathbb R^n}\prod\limits_{k=1}^n x_k^{\alpha_k}e^{-ix_k\omega_k}dx= f ^ ( ω ) = ( 2 π ) 2 n 1 R n ∫ x α e − i ( x , ω ) d x = ( 2 π ) 2 n 1 R n ∫ k = 1 ∏ n x k α k e − i x k ω k d x =
= ∏ k = 1 n ( 1 2 π ∫ R x k α k e − i x k ω k d x k ) =\prod\limits_{k=1}^n\bigl(\frac{1}{\sqrt{2\pi}}\int\limits_{\mathbb R}x_k^{\alpha_k}e^{-ix_k\omega_k}dx_k\bigr) = k = 1 ∏ n ( 2 π 1 R ∫ x k α k e − i x k ω k d x k )
Consider 1 2 π ∫ R x α e − i x ω d x \frac{1}{\sqrt{2\pi}}\int\limits_{\mathbb R}x^{\alpha}e^{-ix\omega}dx 2 π 1 R ∫ x α e − i x ω d x . Prove by induction that 1 2 π ∫ R x α e − i x ω d x = i α 2 π δ ( α ) ( ω ) \frac{1}{\sqrt{2\pi}}\int\limits_{\mathbb R}x^{\alpha}e^{-ix\omega}dx=i^{\alpha}\sqrt{2\pi}\delta^{(\alpha)}(\omega) 2 π 1 R ∫ x α e − i x ω d x = i α 2 π δ ( α ) ( ω ) .
Since δ ( ω ) = δ ( ω ) ‾ \delta(\omega)=\overline{\delta(\omega)} δ ( ω ) = δ ( ω ) , for α = 0 \alpha=0 α = 0 we have 1 2 π ∫ R e − i x ω d x = 1 2 π ∫ R e i x ω d x ‾ = \frac{1}{\sqrt{2\pi}}\int\limits_{\mathbb R}e^{-ix\omega}dx=\overline{\frac{1}{\sqrt{2\pi}}\int\limits_{\mathbb R}e^{ix\omega}dx}= 2 π 1 R ∫ e − i x ω d x = 2 π 1 R ∫ e i x ω d x =
= 2 π ⋅ δ ( ω ) ‾ = 2 π δ ( ω ) =\sqrt{2\pi}\cdot\overline{\delta(\omega)}=\sqrt{2\pi}\delta(\omega) = 2 π ⋅ δ ( ω ) = 2 π δ ( ω ) .
Suppose that 1 2 π ∫ R x k e − i x ω d x = i k 2 π δ ( k ) ( ω ) \frac{1}{\sqrt{2\pi}}\int\limits_{\mathbb R}x^ke^{-ix\omega}dx=i^k\sqrt{2\pi}\delta^{(k)}(\omega) 2 π 1 R ∫ x k e − i x ω d x = i k 2 π δ ( k ) ( ω ) , where k ≥ 0 k\ge 0 k ≥ 0 .
Then i k + 1 2 π δ ( k + 1 ) ( ω ) = i d d ω ( i k 2 π δ ( k ) ( ω ) ) i^{k+1}\sqrt{2\pi}\delta^{(k+1)}(\omega)=i\frac{d}{d\omega}\bigl(i^k\sqrt{2\pi}\delta^{(k)}(\omega)\bigr) i k + 1 2 π δ ( k + 1 ) ( ω ) = i d ω d ( i k 2 π δ ( k ) ( ω ) ) . By the induction hypothesis we obtain i k + 1 2 π δ ( k + 1 ) ( ω ) = i d d ω ( 1 2 π ∫ R x k e − i x ω d x ) ) = i^{k+1}\sqrt{2\pi}\delta^{(k+1)}(\omega)=i\frac{d}{d\omega}\bigl(\frac{1}{\sqrt{2\pi}}\int\limits_{\mathbb R}x^ke^{-ix\omega}dx)\bigr)= i k + 1 2 π δ ( k + 1 ) ( ω ) = i d ω d ( 2 π 1 R ∫ x k e − i x ω d x ) ) =
= 1 2 π ∫ R i x k d e − i x ω d ω d x = 1 2 π ∫ R x k + 1 e − i x ω d x =\frac{1}{\sqrt{2\pi}}\int\limits_{\mathbb R}ix^k\frac{de^{-ix\omega}}{d\omega}dx=\frac{1}{\sqrt{2\pi}}\int\limits_{\mathbb R}x^{k+1}e^{-ix\omega}dx = 2 π 1 R ∫ i x k d ω d e − i x ω d x = 2 π 1 R ∫ x k + 1 e − i x ω d x
So we prove this statement for α = k + 1 \alpha=k+1 α = k + 1 .
By the principle of mathematical induction we obtain that 1 2 π ∫ R x α e − i x ω d x = i α 2 π δ ( α ) ( ω ) \frac{1}{\sqrt{2\pi}}\int\limits_{\mathbb R}x^{\alpha}e^{-ix\omega}dx=i^{\alpha}\sqrt{2\pi}\delta^{(\alpha)}(\omega) 2 π 1 R ∫ x α e − i x ω d x = i α 2 π δ ( α ) ( ω ) for all α ≥ 0 \alpha\ge 0 α ≥ 0 .
So f ^ ( ω ) = ∏ k = 1 n ( 1 2 π ∫ R x k α k e − i x k ω k d x k ) = \hat{f}(\omega)=\prod\limits_{k=1}^n\bigl(\frac{1}{\sqrt{2\pi}}\int\limits_{\mathbb R}x_k^{\alpha_k}e^{-ix_k\omega_k}dx_k\bigr)= f ^ ( ω ) = k = 1 ∏ n ( 2 π 1 R ∫ x k α k e − i x k ω k d x k ) =
= ∏ k = 1 n ( i α k 2 π δ ( α k ) ( ω k ) ) = i ∣ α ∣ ( 2 π ) n 2 ∏ k = 1 n δ ( α k ) ( ω k ) =\prod\limits_{k=1}^n\bigl(i^{\alpha_k}\sqrt{2\pi}\delta^{(\alpha_k)}(\omega_k)\bigr)=i^{|\alpha|}(2\pi)^\frac{n}{2}\prod\limits_{k=1}^n\delta^{(\alpha_k)}(\omega_k) = k = 1 ∏ n ( i α k 2 π δ ( α k ) ( ω k ) ) = i ∣ α ∣ ( 2 π ) 2 n k = 1 ∏ n δ ( α k ) ( ω k )
Answer: i ∣ α ∣ ( 2 π ) n 2 ∏ k = 1 n δ ( α k ) ( ω k ) i^{|\alpha|}(2\pi)^\frac{n}{2}\prod\limits_{k=1}^n\delta^{(\alpha_k)}(\omega_k) i ∣ α ∣ ( 2 π ) 2 n k = 1 ∏ n δ ( α k ) ( ω k )
Comments