Given, "f(x) = axe^{bx}"
"f(1\/4)=1"
"(a\/4)e^{b\/4}=1 ----(1)"
Local maximum at x=1/4, that means "f'(1\/4)=0"
"f'(x) = abxe^{bx} + ae^{bx}"
"f'(1\/4)= (ab\/4)e^{b\/4}+ae^{b\/4}=0 --(2)"
Solving the 2nd equation,
"e^{b\/4}(ab\/4+a)=0"
Now, "e^{b\/4}\u22600"
So, "(ab\/4 +a)=0"
Or, "a(b\/4+1)=0"
Now from equation (1), value of 'a' cannot be zero.
So, "(b\/4+1)=0"
Or, "b=-4"
Putting the value of 'b' in equation (1),
"(a\/4) e^{-1}=1"
"a\/4e=1"
Or, "a=4e"
So, "a=4e,b= -4"
Comments
Leave a comment