Question #98762
A fluid motion is given by ~v = (y sin z - sin x)ˆi + (x sin z+ 2 yz)ˆj + (xy cos z + y
2
)
ˆk. Is
the motion irrotational? If so, find the potential function of ~v.
1
Expert's answer
2019-11-18T11:04:12-0500

Potential of a function


We need to find the potential function of the given function if it is an irrational.


Solution:


The given function is,


vˉ=(ysinzsinx)i^+(xsinz+2yz)j^+(xycosz+y2)k^\bar {v} = (y sin z - sin x ) \hat {i} + ( x sin z + 2yz ) \hat {j} + (xy cos z +y^2 ) \hat {k }

the motion vector is irrational if

×v=0\vec \nabla \times \vec {v} = \vec {0}

So,

×v=i^j^k^xyz(ysinzsinx)(xsinz+2yz)(xycosz+y2)\vec \nabla \times \vec {v} = \begin{vmatrix} \hat {i} & \hat {j} & \hat {k}\\ \frac {\partial }{\partial x} & \frac {\partial }{\partial y} & \frac {\partial }{\partial z}\\ (y sin z - sin x ) & ( x sin z + 2yz) & (xy cos z + y^2) \end{vmatrix}

Now find the Determinant,




×v=i^ [y(xycosz+y2)z(xsinz+2yz]\vec \nabla \times \vec {v} = \hat {i} \space [ \frac {\partial }{\partial y} (x y cos z+ y^2) - \frac {\partial }{\partial z} (x sin z + 2yz ]

 j^ [x(xycosz+y2)z(ysinzsinx]- \space \hat {j} \space [\frac {\partial }{\partial x} (xy cos z + y^2) - \frac {\partial }{\partial z} ( y sin z - sin x ]

+k^ [x(xsinz+2yz)y(ysinzsinx)]+ \hat {k} \space [ \frac {\partial }{\partial x} (x sin z + 2yz ) - \frac {\partial }{\partial y} (y sin z- sin x)]

=i^(x cosz+2yxcosz2y)j^[ycoszycosz]+k^[sinzsinz]=\hat {i} (x \space cos z + 2y - x cos z -2y) - \hat {j} [ y cos z y cos z] + \hat {k} [ sin z - sinz]


= =i^(0)j^(0)+k^(0)=0= \hat {i} (0) - \hat {j} (0) + \hat {k} (0) = \vec {0}

Therefore,

×v=0\vec {\nabla} \times \vec {v} = \vec {0}


So,

v is irrational\vec {v} \space is \space irrational

Now we can find the potential function


Let the potential function is f(x,y,z)f(x, y, z)


We know, the potential function must satisfy the below equation,


i.e.

f=v\vec \nabla f = \vec v

We know,

df=f.(xi^+yj^+zk^)df = \vec\nabla f . ( x \hat {i} + y \hat {j} + z \hat {k} )

df=v.(xi^+yj^+zk^)df = \vec v . ( x \hat {i} + y \hat {j} + z \hat {k} )

(since , =v)\vec \nabla = v )

df=((ysinzsinx)i^+(xsinz+2yz)j^+(xycosz+y2)k^). (dxi^+dyj^+dzk^)df =( { (y sin z - sin x ) \hat {i} + ( x sin z + 2yz ) \hat {j} + (xy cos z +y^2 ) \hat {k } }) . \space( dx \hat {i} + dy \hat {j} + dz \hat {k} )

df=ysinzdxsinxdx+xsinzdy+2yzdy+xycoszdz+y2dzdf = y sin z dx - sinx dx + x sin z dy + 2 y z dy + x y cos z dz + y^2 dz



df=(ysinzdx+xsinzdy+xycoszdz)+(2yzdy+y2dz)sinxdxdf = (y sin z dx+ x sin z dy + xy cos z dz) + (2yz dy + y^2 dz) - sin x dx


df=d(xysinz)+d(y2z)+d(cosx)df = d(xysinz ) + d (y^2 z) + d(cos x)

df=d(xysinz+y2z+cosx)df = d( xy sin z + y^2 z + cos x)

Integrating, we get


f(x,y,z)=xy sinz+y2 z+cosxf (x, y, z) = xy \space sin z + y^2 \space z + cos x

Answer:


potential function of the given function is

f(x,y,z)=xy sinz+y2 z+cosxf (x, y, z) = xy \space sin z + y^2 \space z + cos x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS