Potential of a function
We need to find the potential function of the given function if it is an irrational.
Solution:
The given function is,
v ˉ = ( y s i n z − s i n x ) i ^ + ( x s i n z + 2 y z ) j ^ + ( x y c o s z + y 2 ) k ^ \bar {v} = (y sin z - sin x ) \hat {i} + ( x sin z + 2yz ) \hat {j} + (xy cos z +y^2 ) \hat {k } v ˉ = ( ys in z − s in x ) i ^ + ( x s in z + 2 yz ) j ^ + ( x ycosz + y 2 ) k ^
the motion vector is irrational if
∇ ⃗ × v ⃗ = 0 ⃗ \vec \nabla \times \vec {v} = \vec {0} ∇ × v = 0
So,
∇ ⃗ × v ⃗ = ∣ i ^ j ^ k ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z ( y s i n z − s i n x ) ( x s i n z + 2 y z ) ( x y c o s z + y 2 ) ∣ \vec \nabla \times \vec {v} = \begin{vmatrix}
\hat {i} & \hat {j} & \hat {k}\\
\frac {\partial }{\partial x} & \frac {\partial }{\partial y} & \frac {\partial }{\partial z}\\
(y sin z - sin x ) & ( x sin z + 2yz) & (xy cos z + y^2)
\end{vmatrix} ∇ × v = ∣ ∣ i ^ ∂ x ∂ ( ys in z − s in x ) j ^ ∂ y ∂ ( x s in z + 2 yz ) k ^ ∂ z ∂ ( x ycosz + y 2 ) ∣ ∣
Now find the Determinant,
∇ ⃗ × v ⃗ = i ^ [ ∂ ∂ y ( x y c o s z + y 2 ) − ∂ ∂ z ( x s i n z + 2 y z ] \vec \nabla \times \vec {v} = \hat {i} \space [ \frac {\partial }{\partial y} (x y cos z+ y^2) - \frac {\partial }{\partial z} (x sin z + 2yz ] ∇ × v = i ^ [ ∂ y ∂ ( x ycosz + y 2 ) − ∂ z ∂ ( x s in z + 2 yz ]
− j ^ [ ∂ ∂ x ( x y c o s z + y 2 ) − ∂ ∂ z ( y s i n z − s i n x ] - \space \hat {j} \space [\frac {\partial }{\partial x} (xy cos z + y^2) - \frac {\partial }{\partial z} ( y sin z - sin x ] − j ^ [ ∂ x ∂ ( x ycosz + y 2 ) − ∂ z ∂ ( ys in z − s in x ]
+ k ^ [ ∂ ∂ x ( x s i n z + 2 y z ) − ∂ ∂ y ( y s i n z − s i n x ) ] + \hat {k} \space [ \frac {\partial }{\partial x} (x sin z + 2yz ) - \frac {\partial }{\partial y} (y sin z- sin x)] + k ^ [ ∂ x ∂ ( x s in z + 2 yz ) − ∂ y ∂ ( ys in z − s in x )]
= i ^ ( x c o s z + 2 y − x c o s z − 2 y ) − j ^ [ y c o s z y c o s z ] + k ^ [ s i n z − s i n z ] =\hat {i} (x \space cos z + 2y - x cos z -2y) - \hat {j} [ y cos z y cos z] + \hat {k} [ sin z - sinz] = i ^ ( x cosz + 2 y − x cosz − 2 y ) − j ^ [ ycoszycosz ] + k ^ [ s in z − s in z ]
= = i ^ ( 0 ) − j ^ ( 0 ) + k ^ ( 0 ) = 0 ⃗ = \hat {i} (0) - \hat {j} (0) + \hat {k} (0) = \vec {0} = i ^ ( 0 ) − j ^ ( 0 ) + k ^ ( 0 ) = 0
Therefore,
∇ ⃗ × v ⃗ = 0 ⃗ \vec {\nabla} \times \vec {v} = \vec {0} ∇ × v = 0
So,
v ⃗ i s i r r a t i o n a l \vec {v} \space is \space irrational v i s i rr a t i o na l
Now we can find the potential function
Let the potential function is f ( x , y , z ) f(x, y, z) f ( x , y , z )
We know, the potential function must satisfy the below equation,
i.e.
∇ ⃗ f = v ⃗ \vec \nabla f = \vec v ∇ f = v
We know,
d f = ∇ ⃗ f . ( x i ^ + y j ^ + z k ^ ) df = \vec\nabla f . ( x \hat {i} + y \hat {j} + z \hat {k} ) df = ∇ f . ( x i ^ + y j ^ + z k ^ )
d f = v ⃗ . ( x i ^ + y j ^ + z k ^ ) df = \vec v . ( x \hat {i} + y \hat {j} + z \hat {k} ) df = v . ( x i ^ + y j ^ + z k ^ ) (since , ∇ ⃗ = v ) \vec \nabla = v ) ∇ = v )
d f = ( ( y s i n z − s i n x ) i ^ + ( x s i n z + 2 y z ) j ^ + ( x y c o s z + y 2 ) k ^ ) . ( d x i ^ + d y j ^ + d z k ^ ) df =( { (y sin z - sin x ) \hat {i} + ( x sin z + 2yz ) \hat {j} + (xy cos z +y^2 ) \hat {k } }) . \space( dx \hat {i} + dy \hat {j} + dz \hat {k} ) df = ( ( ys in z − s in x ) i ^ + ( x s in z + 2 yz ) j ^ + ( x ycosz + y 2 ) k ^ ) . ( d x i ^ + d y j ^ + d z k ^ )
d f = y s i n z d x − s i n x d x + x s i n z d y + 2 y z d y + x y c o s z d z + y 2 d z df = y sin z dx - sinx dx + x sin z dy + 2 y z dy + x y cos z dz + y^2 dz df = ys in z d x − s in x d x + x s in z d y + 2 yz d y + x ycosz d z + y 2 d z
d f = ( y s i n z d x + x s i n z d y + x y c o s z d z ) + ( 2 y z d y + y 2 d z ) − s i n x d x df = (y sin z dx+ x sin z dy + xy cos z dz) + (2yz dy + y^2 dz) - sin x dx df = ( ys in z d x + x s in z d y + x ycosz d z ) + ( 2 yz d y + y 2 d z ) − s in x d x
d f = d ( x y s i n z ) + d ( y 2 z ) + d ( c o s x ) df = d(xysinz ) + d (y^2 z) + d(cos x) df = d ( x ys in z ) + d ( y 2 z ) + d ( cos x )
d f = d ( x y s i n z + y 2 z + c o s x ) df = d( xy sin z + y^2 z + cos x) df = d ( x ys in z + y 2 z + cos x )
Integrating, we get
f ( x , y , z ) = x y s i n z + y 2 z + c o s x f (x, y, z) = xy \space sin z + y^2 \space z + cos x f ( x , y , z ) = x y s in z + y 2 z + cos x
Answer:
potential function of the given function is
f ( x , y , z ) = x y s i n z + y 2 z + c o s x f (x, y, z) = xy \space sin z + y^2 \space z + cos x f ( x , y , z ) = x y s in z + y 2 z + cos x
Comments