Potential of a function 
We need to find the potential function  of the given function if it is an irrational.
Solution: 
The given function is,
                      v ˉ = ( y s i n z − s i n x ) i ^ + ( x s i n z + 2 y z ) j ^ + ( x y c o s z + y 2 ) k ^ \bar {v} = (y sin z - sin x ) \hat {i} + ( x sin z + 2yz ) \hat {j} + (xy cos z +y^2 ) \hat {k } v ˉ = ( ys in z − s in x ) i ^ + ( x s in z + 2 yz ) j ^  + ( x ycosz + y 2 ) k ^ 
        
the motion vector is irrational if  
∇ ⃗ × v ⃗ = 0 ⃗ \vec \nabla \times \vec {v} = \vec {0} ∇ × v = 0  
So, 
      
∇ ⃗ × v ⃗ = ∣ i ^ j ^ k ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z ( y s i n z − s i n x ) ( x s i n z + 2 y z ) ( x y c o s z + y 2 ) ∣ \vec \nabla \times \vec {v} = \begin{vmatrix}
   \hat {i} & \hat {j}  & \hat {k}\\
   \frac {\partial }{\partial x} & \frac {\partial }{\partial y} & \frac {\partial }{\partial z}\\
 (y sin z - sin x ) & ( x sin z + 2yz)  & (xy cos z + y^2)
\end{vmatrix} ∇ × v = ∣ ∣  i ^ ∂ x ∂  ( ys in z − s in x )  j ^  ∂ y ∂  ( x s in z + 2 yz )  k ^ ∂ z ∂  ( x ycosz + y 2 )  ∣ ∣   
Now find the Determinant,
∇ ⃗ × v ⃗ = i ^   [ ∂ ∂ y ( x y c o s z + y 2 ) − ∂ ∂ z ( x s i n z + 2 y z ] \vec \nabla \times \vec {v} = \hat {i} \space [ \frac {\partial }{\partial y} (x y cos z+ y^2) -   \frac {\partial }{\partial z} (x sin z + 2yz ] ∇ × v = i ^   [ ∂ y ∂  ( x ycosz + y 2 ) − ∂ z ∂  ( x s in z + 2 yz ]                                                                     
−   j ^   [ ∂ ∂ x ( x y c o s z + y 2 ) − ∂ ∂ z ( y s i n z − s i n x ] - \space \hat {j} \space [\frac {\partial }{\partial x} (xy cos z + y^2) - \frac {\partial }{\partial z} ( y sin z - sin x  ] −   j ^    [ ∂ x ∂  ( x ycosz + y 2 ) − ∂ z ∂  ( ys in z − s in x ]                                                          
+ k ^   [ ∂ ∂ x ( x s i n z + 2 y z ) − ∂ ∂ y ( y s i n z − s i n x ) ] + \hat {k} \space  [ \frac {\partial }{\partial x}  (x sin z + 2yz ) - \frac {\partial }{\partial y}  (y sin z- sin x)] + k ^   [ ∂ x ∂  ( x s in z + 2 yz ) − ∂ y ∂  ( ys in z − s in x )]                                               
                                                = i ^ ( x   c o s z + 2 y − x c o s z − 2 y ) − j ^ [ y c o s z y c o s z ] + k ^ [ s i n z − s i n z ] =\hat {i} (x \space cos z + 2y -  x cos z -2y) - \hat {j} [ y cos z y cos z] + \hat {k} [ sin z - sinz] = i ^ ( x   cosz + 2 y − x cosz − 2 y ) − j ^  [ ycoszycosz ] + k ^ [ s in z − s in z ] 
                                                  = = i ^ ( 0 ) − j ^ ( 0 ) + k ^ ( 0 ) = 0 ⃗ = \hat {i} (0)  - \hat {j} (0) + \hat {k} (0) = \vec {0} = i ^ ( 0 ) − j ^  ( 0 ) + k ^ ( 0 ) = 0 
   
Therefore, 
                              ∇ ⃗ × v ⃗ = 0 ⃗ \vec {\nabla} \times \vec {v} = \vec {0} ∇ × v = 0 
So,  
v ⃗   i s   i r r a t i o n a l \vec {v} \space  is \space irrational v   i s   i rr a t i o na l  
Now we can find the  potential function  
Let the potential function is  f ( x , y , z ) f(x, y, z) f ( x , y , z ) 
We know, the potential function must satisfy the below equation, 
 i.e. 
              
∇ ⃗ f = v ⃗ \vec \nabla f = \vec v ∇ f = v  
 
We know, 
d f = ∇ ⃗ f . ( x i ^ + y j ^ + z k ^ ) df = \vec\nabla f . ( x \hat {i} + y \hat {j} + z \hat {k} ) df = ∇ f . ( x i ^ + y j ^  + z k ^ )  
                            
d f = v ⃗ . ( x i ^ + y j ^ + z k ^ ) df = \vec v . ( x \hat {i} + y \hat {j} + z \hat {k} ) df = v . ( x i ^ + y j ^  + z k ^ )                   (since , ∇ ⃗ = v ) \vec \nabla = v ) ∇ = v ) 
 
d f = ( ( y s i n z − s i n x ) i ^ + ( x s i n z + 2 y z ) j ^ + ( x y c o s z + y 2 ) k ^ ) .   ( d x i ^ + d y j ^ + d z k ^ ) df =( { (y sin z - sin x ) \hat {i} + ( x sin z + 2yz ) \hat {j} + (xy cos z +y^2 ) \hat {k } }) . \space( dx \hat {i} + dy \hat {j} + dz \hat {k} ) df = ( ( ys in z − s in x ) i ^ + ( x s in z + 2 yz ) j ^  + ( x ycosz + y 2 ) k ^ ) .   ( d x i ^ + d y j ^  + d z k ^ )                             
                                d f = y s i n z d x − s i n x d x + x s i n z d y + 2 y z d y + x y c o s z d z + y 2 d z df = y sin z dx - sinx dx + x sin z dy + 2 y z dy + x y cos z dz + y^2 dz df = ys in z d x − s in x d x + x s in z d y + 2 yz d y + x ycosz d z + y 2 d z 
d f = ( y s i n z d x + x s i n z d y + x y c o s z d z ) + ( 2 y z d y + y 2 d z ) − s i n x d x df = (y sin z dx+ x sin z dy + xy cos z dz) + (2yz dy + y^2 dz) - sin x dx df = ( ys in z d x + x s in z d y + x ycosz d z ) + ( 2 yz d y + y 2 d z ) − s in x d x   
d f = d ( x y s i n z ) + d ( y 2 z ) + d ( c o s x ) df = d(xysinz ) + d (y^2 z) + d(cos x) df = d ( x ys in z ) + d ( y 2 z ) + d ( cos x )  
                                 
d f = d ( x y s i n z + y 2 z + c o s x ) df = d( xy sin z + y^2 z + cos x) df = d ( x ys in z + y 2 z + cos x )  
Integrating, we get
                   
f ( x , y , z ) = x y   s i n z + y 2   z + c o s x f (x, y, z) = xy \space sin z + y^2 \space z + cos x f ( x , y , z ) = x y   s in z + y 2   z + cos x  
Answer: 
potential function of the given function is  
               
f ( x , y , z ) = x y   s i n z + y 2   z + c o s x f (x, y, z) = xy \space sin z + y^2 \space z + cos x f ( x , y , z ) = x y   s in z + y 2   z + cos x  
Comments